簡易檢索 / 詳目顯示

研究生: 高曼容
論文名稱: 聚酸酐共聚物混摻表面改質奈米氫氧磷灰石於骨修復應用
Polyanhydride copolymer blending with surface modified nano-hydroxyapatite for bone healing
指導教授: 朱一民
口試委員: 鍾次文
魏毓宏
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 58
中文關鍵詞: 骨填充材料機械強度聚酸酐類高分子氫氧磷灰石
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在骨組織修復(bone healing)的過程,就一良好之骨填充(bone graft)材料來說,一定的機械強度(mechanical strength)與良好的生物相容性(biocompatibility)是兩個主要的考量重點。本研究結合聚酸酐類高分子sebacic acid (SA)和1,3-bis(p-carboxyphenoxy)propane (CPP),以不同之莫耳比例形成共聚物(copolymer),添加以polycaprolactone (PCL)表面改質後的hydroxyapatite (HAP) – g-HAP,增強高分子共聚物較弱的機械強度。在降解過程中,運用聚酸酐類表面降解(surface degradation)的特性,使塊狀材料仍能保持一定的機械強度。在生物相容性方面,聚酸酐類高分子在降解過程中,其分解物不會造成嚴重的pH值下降,無害於細胞的生長;HAP為人體骨頭中的主要成分,添加HAP有助於骨細胞的礦化作用(mineralization),促進新生骨形成,不產生纖維軟組織。研究結果顯示,最適化材料為CPP:SA = 6:4添加15%wt g-HAP,此材料之機械強度可達69MPa,其降解速度可配合骨修復時間,於降解後仍保持良好的支撐性,具有適合運用在骨填充材料的優點,可作為未來骨修復材料的應用。


    第一章 文獻回顧 1 1-1 生醫材料 1 1-2 可降解性高分子材料 3 1-2-1 降解類型 4 1-2-2 影響降解速率因素 5 1-3 聚酸酐[6] 6 1-3-1 聚酸酐的合成[7] 7 1-3-2 聚酸酐的降解與分解 8 1-3-3 聚酸酐的優勢與缺陷[6] 9 1-4 氫氧磷灰石[10-13] 10 1-4-1 氫氧基磷灰石合成方法 11 1-4-2 氫氧基磷灰石之應用 12 1-5 骨組織[18.19] 13 1-5-1 骨組織的形成 13 1-5-2 骨組織的種類 14 1-5-3 骨組織修復[22] 15 1-5-4 骨填充物 16 第二章 研究動機與目的 17 第三章 實驗用品與設備 19 3-1 實驗藥品 19 3-2 實驗儀器 20 第四章 實驗步驟與方法 21 4-1 實驗架構 21 4-2 實驗步驟 23 4-2-1 合成1,3-bis(p-carboxyphenoxy)propane, CPP 23 4-2-2 酸酐化CPP及sebacic acid, SA 24 4-2-3 熔融縮合聚合CPPA、preSA 25 4-2-4 表面改質Hydroxyapatite nanoparticle(nano-HAP) [27] 26 4-2-5 聚酸酐共聚物與g-HAP混合製錠 26 4-2-6 材料性質鑑定 27 4-2-7 降解測試 30 4-2-8 動物皮下植入測試 30 第五章 實驗結果與討論 31 5-1 CPP-SA共聚物結構 31 5-1-1 合成CPP單體 31 5-1-2 酸酐化CPP 32 5-1-3 酸酐化SA 33 5-1-4 熔融縮合聚合CPPA-preSA 34 5-1-5 CPP-SA共聚物熱性質分析 36 5-2 nano-HAP表面改質 37 5-3 機械強度測定 39 5-4 降解測試 40 5-4-1 重量損失百分比 41 5-4-2 機械強度測定 47 5-4-3 SEM觀測 53 5-5 動物皮下植入測試 54 第六章 結論與未來展望 55 第七章 參考文獻 57

    1. J.S. Temenoff, A. G. M., Biomaterials: the Intersection of biology and materials science. Person/Prentice Hall: USA, 2008.
    2. 林峰輝, 生物醫用材料. 新文京開發出版股份有限公司: 2004.
    3. R. Chandra, R. Rustgi, Biodegrable polymers. Progress in Polymer Science 23 (1998) 1273-1335.
    4. A. Gopferich, J. Tessmar, Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews 54 (2002) 911–931.
    5. Hollinger, J. O., Biomedical Applications of Synthetic Biodegradable Polymers. CRC Press: 1995.
    6. N. Kumar, R. Langer, A.J. Domb, Polyanhydrides: an overview. Advanced Drug Delivery Reviews 54 (2002) 1015-1039
    7. K.W. Leong, V. Simonte, R. Langer, Synthesis of Polyanhydrides – Melt-Poly- condensation, Dehydrochlorination, and Dehydrative Coupling. Macromolecules 20(4) (1987) 705-712
    8. E. Park, M. Maniar, J. Shan, Effect of model compounds with varying physicochemical properties on erosion of polyanhydride devices. Journal of Biomedical Materials Research 19 (1987) 941-955.
    9. A.J. Domb, R. Langer, Solid-state and solution stability of poly(anhydrides) and poly(esters). Macromolecules 22 (1989) 2117-2122.
    10. K. de Groot, Bioceramics of Calcium Phosphate. CRC Press: 1983.
    11. M. Jarcho, Clinical Orthopaedics and Related Research. No.157:1981.
    12. Hydroxyapatite. Intermdics Orthopedics Inc.:1982.
    13. Diorio, Acta Cryst 11, 308 (1958)
    14. M. Neo, H. Matsuoka, H. Akiyama, H. Ito, H. Kohno, T. Nakamura, The expression of bone matrix protein mRNAs around β-TCP particles implanted into bone. Journal Biomed Mater Res 39, 71 (1998).
    15. K. de Groot, Medical application of calcium phosphate bioceramics. 日本協會學術論文誌99 (1991) 943-953.
    16. A. S. Dosner, A. Rerloff, Refinement of the Hydroxyapatite. Acra Cryst 11, 308 (1985)
    17. A. D. Wilson, H. J. Prosser, D. M. Powis, Mechanism of adhesion of poly- electrolyte cements to Hydroxyapatite. Journal of Dental Research 62, 590 (1983).
    18. A. L. Boskey, A. S. Posner, Bone structure, composition, and mineralization. Orthop Clin North Am 15(4) (1984) 597-612.
    19. Taken from Junqueira and Carneiro, Basic Histology. 44,46.
    20. D. S. Muggli, A. K. Burkoth, Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res 46(2) (1999) 271-278.
    21. http://big5.wiki8.com/gu_15107/
    22. http://www.hkma.org/chinese/pubmededu/special/bone.htm
    23. I.H. Kalfas, Principles of Bone Healing. Neurosurg Focus 10 (2001) 1-4.
    24. P.D. Costantion, C.D. Friedman, Synthetic bone graft substitutes. Otolaryngol. Clin North Am 27 (1994) 1037.
    25. Y. Khan, M. J. Yaszemski, Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90 Suppl 1 (2008) 36-42.
    26. A. Ravaglioli, A. Krajewski, Interface between hydroxyapatite and mandibular human bone tissue. Biomaterials 13(3) (1992) 162-167.
    27. J. Zhao, K. Duan, J.W. Zhang, X. Lu, J. Weng, Improved mechanical properties of hydroxyapatite/poly(ε-caprolactone) scaffolds by surface modification of hydroxyapatite . Appl. Surf. Sci. 256 (2010) 4586-4590.
    28. S. Kannan, A.F. Lemos, J.M.F. Ferreira, Synthesis and mechanical performance
    of biological-like hydroxyapatites, Chem. Mater. 18 (2006) 2181–2186.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE