研究生: |
梁藝礬 Liang, Yi-Fan |
---|---|
論文名稱: |
合成二氧化矽/銀核殼結構及其表面電漿子共振引發之光催化效應研究 The Plasmonic Induced Photocatalyst of Silica/Silver Core-Shell Structure |
指導教授: |
施漢章
Shih, Han-Chang 葉均蔚 Yeh, Jien-Wei |
口試委員: |
施漢章
Shih, Han-Chang 葉均蔚 Yeh, Jien-Wei 劉家銘 Liu, Chia-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 二氧化矽 、銀 、核殼結構 、光催化 |
外文關鍵詞: | silica, silver, core shell, photocatalyst |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗成功利用無電電鍍法(electroless plating),以氯化亞錫作為表面修飾劑,藉由在液相中之氧化還原反應成功合成單一粒徑且均勻性高之二氧化矽/銀核殼結構,並使用氨銀溶液作為前驅物、葡萄糖作為還原劑進一步地控制銀顆粒之大小。
在形貌分析上,利用SEM、TEM進行觀察其二氧化矽粒徑大小、表面形貌、銀顆粒粒徑之批覆情形,並以軟體(SigmaScan®Pro )計算其粒徑分佈。元素分析方面則藉由XRD確認銀之主要繞射晶面,並以HRTEM觀察單一銀顆粒上之晶面間距;最後透過XPS觀察銀、錫離子與二氧化矽間因鍵結所造成之化學位移(chemical shift)。
不同於單一成分之金屬顆粒,不同形貌的二氧化矽/銀核殼形結構,呈現多樣、可調控之光學特性,在本實驗中,隨著銀顆粒由10奈米成長至50奈米,其表面電漿共振之可見光-紫外光吸收光譜有兩個明顯趨勢: (1)特徵吸收峰值產生紅移現象;(2)其峰形明顯加寬。
有別於二氧化鈦之光催化反應需利用紫外光,本實驗藉由調控二氧化矽/銀核殼結構之樣貌來改變其SPR吸收波段,高效率地轉換可見光能量於有機分子之分解反應上,不僅能有效利用天然之太陽能源,也解決了隨工業、科技發展所帶來之環境汙染問題,可謂是一舉數得。
In this study, silica/silver core-shell nano-spheres with uniform diameter and morphology were successfully synthesized by a facile electroless plating method within a mild condition. With the help of glucose, the particle size of silver nanoparticles (AgNPs) deposited on silica spheres was well controlled in the range from 10 to 50 nm.
The morphology of the SiO2/Ag was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the lattice analysis were performed by X-ray diffraction (XRD) and high-resoluton TEM (HR-TEM). Furthermore, the binding energy and chemical shift were examined using X-ray photoelectron spectroscopy (XPS).
In the optical properties test, we found that when the diameter of AgNPs increased form10 to 50 nm, the surface plasmon resonance (SPR) absorption band shifted toward infra-red region and became broader gradually.
This result is very promising because the traditional TiO2 without doping other elements has to absorb UV-light to trigger the photocatalystic reaction. With the using of SiO2/Ag composite, we may efficiently change the solar energy to decompose the organic pollutants. It is not only a cost-effective route but also an energy-saving way to our environment.
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991)
[2] A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37–38 (1972).
[3] W. Stöber, A. Fink, E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range”, J. Colloid Interface Sci., 26, 62-69 (1968)
[4] S.K. Park, Ki Do Kim, H.T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles”, Colloids Surf. A, 197,7-17 (2001)
[5] V.K. LaMer, R.H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols”, J. A. Chem. Soc., 72, 4847-4854 (1950)
[6] Yuan Huang, J.E. Pemberton, “Synthesis of uniform, spherical sub-100 nm silica particles using a conceptual modification of the classic LaMer model”, Colloids Surf. A, 360, 175-183 (2010)
[7] 李賢學, “化學還原法製備奈米銀及其應用”, 國立清華大學化學工程系博士論文
[8] K.S. Chou, C.Y. Ren, “Synthesis of nanosized silver particles by chemical reduction method”, Mater. Chem. Phys., 64, 241-246 (2000)
[9] Martin Moskovits, “Surface-Enhanced Spectroscopy”, Rev. Mod. Phys, 57, 783–826 (1985)
[10] Kawata, Satoshi, “Near-Field Optics and Surface Plasmon Polaritons”, Springer (2001)
[11] T. J. Silva, S. Schultz, "A scanning near‐field optical microscope for the imaging of magnetic domains in reflection”, Rev. Sci. Instrum, 67, 715 - 725 (1996)
[12] Prashant K. Jain, Mostafa A. El-Sayed, ”Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing”, Nano Lett., 8, 4347–4352 (2008)
[13] G. Mie, ”Mie Theory”, Ann. Phys, 25, 377 (1908).
[14] 曾賢德, ”金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作”, 物理雙月刊, 32卷2期, 126 (2010)
[15] S. Linic, Phillip Christopher, David B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy”, Natural Materials, 10, 911-921 (2011)
[16] K. L. Kelly, E. Coronado, L. L. Zhao, George C, Schatz*, ”The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, 107, 668 (2003)
[17] Kalele S., Gosavi S.W., Urban J., Kulkarni S.K.., “Nanoshell particles : synthesis, properties and applications”, Current Science, 91, 1038-1052 (2006)
[18] Smith J.N., Meadows J. and Williams P.A., “Sorption of polyvinylpyrrolidone onto polystyrene lattices and the effect on colloid stability”, Langmuir, 12, 3773-3778 (1996)
[19] Kim S., Fisher B., Eisler H.J., Bawendi M., “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures”, J. Am. Chem. Soc., 125, 11466–11467 (2003)
[20] Kalele S.A., Ashtaputre S.S., Hebalkar N.Y., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., “Optical detection of antibody using silica–silver core–shell particles”, Chem. Phys. Lett., 404, 136-141 (2005)
[21] Hebalkar N., Kharrazi S., Ethiraj A., Urban J., Fink R, Kulkarni S.K., “Structural and optical investigations of SiO2-CdS core-shell particles”, J. Colloid Interface Sci., 278, 107-114 (2004)
[22] West J.L., Halas N.J., “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics”, Annu. Rev. Biomed. Eng., 5, 285-292 (2003)
[23] Graf C., Vossen DLJ, Imhof A, van Blaaderen A. ,“A General Method To Coat Colloidal Particles with Silica”, Langmuir, 19, 6693-6700 (2300)
[24] Prodan E., Redloff C., Halas N.J., Nordlander P., “A Hybridization Model for the Plasmon Response of Complex Nanostructures”, Science, 302, 419-422 (2003)
[25] Westcott S.L., Oldenburg S.J., Lee T.R., Halas N.J., “Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces”, Langmuir, 14, 5396-5401 (1998)
[26] Ashayer R., Mannan S.H., Ajjadi S.S., “Synthesis and characterization of gold nanoshells using poly(diallyldimethyl ammonium chloride)”, Colloids Surf. A , 329, 134-141 (2008)
[27] Choma J., Dziura A., Jamioła D., Nyga P., Jaroniec M., “Preparation and properties of silica-gold core-shell particles”, Colloids Surf. A , 373, 167-171 (2011)
[28] An Y, Chen M, Xue Q, Liu W. ,“Preparation of self-assembly of
carboxylic acid-functionalized silica”, J. Colloid Interface Sci.,
311, 507-513 (2007)
[29] Pham K.N., Fullston D., Sagoe Crentsil K. ,“Surface modification for stability of nano-sized silica colloids”, J. Colloid Interface Sci., 315, 123-127 (2007)
[30] Nakamura M, Ishimura K., “One-pot synthesis and characterization of three kinds of thiol-organosilica nanoparticles”, Langmuir, 24, 5099-5108 (2008)
[31] Chen D., Liu H.Y., Liu J.S., Ren X.L., Meng X.W., Wu W., et al., “A general method for synthesis continuous silver nanoshells on dielectric colloids”, Thin Solid Films, 516, 6371-6376 (2008)
[32] Jankiewicz B.J., Jamiola D., Choma J., Jaroniec M., “Silica–metal core–shell nanostructures”, Adv. Colloid Interface Sci., 170, 28-47 (2011)
[33] Kim J.H., Bryan W.W., Lee T.R.,“Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores”, Langmuir, 24, 11147-11152 (2008)
[34] Gong J.L., Jiang J.H., Liang Y, Shen G.L., Yu R.Q., “Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology”, J Colloid Interface Sci., 298, 752-756 (2006)
[35] Yoshio Kobayashi, Verónica Salgueiriño-Maceira, and Luis M. Liz-Marzán, “Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating”, Chem. Mater., 13, 1630–1633 (2001)
[36] M. Zhu, G. Qian, G. Ding, Z. Wang, M. Wang, “Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres”, Mater. Chem. Phys., 96,489-493 (2006)
[37] Briggs, D., Seah M. P., “Pratical Surface Analysis”, 2nd ed., John Wiley & Sons: New York, Vol.1 (1993)
[38] Ley L., Cardona, M., Baer Y., Campagna M., Grobman W. D., Hochst H., Hufner S., Koch E. E., Kunz C., Pollak R. A., Steigner P., Wertheim G. K., “Topics in Applied Physics”, Springer-Verlag: Berlin, Vol. 27 (1979)
[39] K. Venkata Subba Rao, Machiraju Subrahmanyam, Pierre Boule , “Immobilized TiO2 photocatalyst during long-term use: decrease of its activity”, Appl. Catal. B, 49, 239–249 (2004)
[40] 洪世淇, “奈米科技應用的最前線--光觸媒”, 化工資訊月刊 16:12, 24-27 (2002)
[41] M.V. Rao, K. Rajeshwar, V.R. Pai Verneker, J. DuBow, “Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions”, J. Phys. Chem., 84, 1987–1991 (1980)
[42] Zhang, H.; Banfield, J. F., “Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2”, J. Mater. Res., 15, 437-448 (2000)
[43] Okamoto K., Yamamoto Y., Tanaka H., Itaya. A., “Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder”, Chem. Soc. Jpn. (1985)
[44] Nakajima A., Koizumi S., Watanabe T.; Hashimoto K., “Effect of repeated photo-illumination on the wettability conversion of titanium dioxide”, J. Photochem. Photobiol. A, 146 , 129-132 (2001)
[45] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocalysis in nitrogen- doped titanium oxides”, Science, 293, 269–271 (2001)
[46] Bernhard Kraeutler, Allen J. Bard, “Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes”, J. Am. Chem. Soc., 100, 5985–5992 (1978)
[47] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, “A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide”, J. Am. Chem. Soc., 130 , 1676 – 1680 (2008)
[48] Xi Chen, Huai Yong Zhu, Jin Cai Zhao, Zhan Feng Zheng, Xue Ping Gao “Visible-Light-Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports”, Angew. Chem., 120, 5433 –5436 (2008)
[49] Songmei Sun, Wenzhong Wang , Ling Zhang, Meng Shang, Lu Wang, “Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst”, Catal. Commun., 11, 290–293 (2009)
[50] J. Robertson, K. Xiong, S. J. Clark, “Band gaps and defect levels in functional oxides”, Thin Solid Films, 496, 1-7 (2006)
[51] Masatake Haruta, “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications”, Gold bulletin., 37, 27–36 (2004)
[52] Qi Fu, Howard Saltsburg, Maria Flytzani Stephanopoulos , “Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts”, Science, 301, 935-938 (2003)
[53] Xi Chen, Zhanfeng Zheng, Xuebin Ke, Esa Jaatinen, Tengfeng Xie, Dejun Wang, Cheng Guo, Jincai Zhao, Huaiyong Zhu, “Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation”, Green Chem., 12, 414-419 (2010)
[54] H. Yuan, Chem. Mater., “Shape and SPR Evolution of Thorny Gold Nanoparticles Promoted by Silver Ions”, Chem. Mater., 19, 1592–1600 (2007)
[55] D. K. Roper, W. Ahn, M. Hoepfner, “Determining Surface Plasmon Resonance Response Factors for Deposition onto Three-Dimensional Surfaces”, J. Phys. Chem. C, 111, 3636–3641 (2007)
[56] S. Link, M. A. El Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals properties of gold nanocrystals”, Int. Rev. Phys. Chem., 19, 409–453 (2000)
[57] A. Furube, L. C. Du, K. Hara, R. Katoh, M. Tachiya, “Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles”, J. Am. Chem. Soc., 129, 14852–14853 (2007)
[58] Jackson, John D. “Classical Electrodynamics 3rd” (1998) , Wiley.
[59] 汪建民, “材料分析”, 中國材料科學學會, 355 (1998)
[60] Y.L. Yan, M.A. Helfand, C.R. Clayton , “Evaluation of the effect of surface roughness on thin film thickness measurements using variable angle XPS”, Appl. Surf. Sci., 37, 395-405 (1989)
[61] J.R. Pitts, T.M. Thomas, A.W. Czanderna, “XPS and ISS of submonolayer coverage of Ag on SiO2”, Appl. Surf. Sci., 26, 107–120 (1986)
[62] Matienzo, L. J., Emmi, F., van Hart, D. C., Gall, T. P., “Interactions of high-energy ion beams with polyimide films”, J. Vac. Sci. Technol. A,7, 1784-1789 (1989)
[63] Chaorong Li, Jie Mei, Shuwen Li, Nianpeng Lu, Lina Wang, Benyong Chen, Wenjun Dong, “One-pot synthesis of Ag@SiO2@Ag sandwich nanostructures”, Nanotechnology, 21, 245602 (2011)
[64] Zhanglian Hong, Zhiyu Wang, Xianping Fan, Minquan Wang, “Preparation and characterization of silica–silver core-shell structural submicrometer spheres”, J. Phys. Chem. Sol., 66, 748–752 (2005)
[65] J.C. Flores, V. Torres, M. Popa, D. Crespo, J.M. Calderón-Moreno, “Preparation of core-shell nanospheres of silica-silver: SiO2@ Ag”, J. Non-Cryst. Solids., 354, 5435–5439 (2008)
[66] Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, Y. S. Kang, “Synthesis and characterization of antibacterial Ag-SiO2 nanocomposite”, J. Phys. Chem., 111, 3629 – 3635 (2007)
[67] D. A. Pawlak, Masahiko Ito, Masaoki Oku, Kiyoshi Shimamura, and Tsuguo Fukuda, “Interpretation of XPS O (1s) in Mixed Oxides Proved on Mixed Perovskite Crystals”, J. Phys. Chem. B, 106, 504–507 (2002)
[68] Min. Zhu, G. Qian, G. Ding, Z. Wang, M. Wang, “Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres”, Mater. Chem. Phys., 96, 489–493 (2006)
[69] C.F. Bohren, D.G. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley, New York, 1984 (Chapters 9 and 12)
[70] J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires”, Chem. Phys.Lett., 341, 1-6 (2001)
[71] 陳廣修, “二氧化矽/銀核殼形結構之合成與其表面電漿子效應研究”, 國立清華大學材料科學工程學系碩士論文