簡易檢索 / 詳目顯示

研究生: 季彥良
Yan-Liang Ji
論文名稱: AgIn5S8 延伸式閘極離子感測場效電晶體之研究
The Study on Ionic Sensitivity of AgIn5S8 Thin Film for Extended Gate Field Effect Transistor
指導教授: 陳建瑞
Jiann-Ruey Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 97
中文關鍵詞: 延伸式閘極AgIn5S8離子感測場效電晶體
外文關鍵詞: AgIn5S8, EGFET, ISFET
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在ITO表面上使用水熱法鍍 AgIn5S8 的硫化膜,應用在延伸式閘極離子感測電晶體 (EGFET)做為離子感測薄膜,針對 pH 值、銅離子、鉛離子,測量其對離子感應的靈敏度。

    本論文得知,以水熱法鍍的 AgIn5S8硫化膜對pH的靈敏度可達50.7mV/pH,得到對Cu2+的靈敏度可達34.2mV/p[Cu2+],得到對Pb2+的靈敏度可達95.9mV/ p[Pb2+]。

    本論文將使用四種不同的EGFET作業方式,分別為 N-type MOSFET-EGFET Linear Mode,P-type MOSFET-EGFET Linear Mode,N-type MOSFET-EGFET Saturation Mode,以及N-type MOSFET-EGFET Saturation Mode取得其對應的靈敏度,期望能得知感測薄膜帶正電位與負電位對離子感測的影響,並藉由量測I-V的特性來推斷 AgIn5S8 對離子的感測靈敏度。 同時使用鉑為感測薄膜的EGFET做為一個參考標準。 做為對 pH 值、銅離子、鉛離子感測靈敏度的比較基礎。


    Recently, extended gate field effect transistor (EGFET) had been studied for pH meter or biosensor. In this study, the differences between EGFETs by NMOS and by PMOS were introduced. And, with the ion-sense membrane, AgIn5S8 thin films coated on ITO glass substrates by hydrothermal method, the ions-sensitivities were extracted by linear mode and by saturation mode in different concentration solutions of pH/p[Cu2+]/p[Pb2+]. The results show the sulfide film is sensitive to these kinds of ions. The ion sensitivities on membrane surface are 50.7mV/pH, 23.9mV/p[Cu2+], and 95.9mV/p[Pb2+] in NMOS-EGFET under applied bias-voltage 2.5V at reference electrode with saturation mode extraction. The membranes were also analyzed by electron spectroscopy for chemical analysis (ESCA), X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. The analysis also shows good crystallinity of AgIn5S8 thin film.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 第二章 實驗背景與原理 6 2-1 離子感測場效電晶體 (ISFET) 6 2-1-1 Site Binding Model 13 2-1-2 電雙層(EDL) 18 2-2 延伸式閘極離子感測場效電晶體 (EGFET) 23 第三章 實驗方法 27 3-1 實驗流程圖 27 3-2 導電玻璃切割與清洗 28 3-3 感測薄膜製作 29 3-4 EGFET製作 30 3-5 溶液配製 31 3-6 電性量測裝置 32 3-6-1 CD4007UB電性量測時腳位接法 33 3-6-2 電性量測設定 34 3-7 電性分析 35 3-8 3-8 X-ray 繞射分析(XRD) 36 3-9 3-9 化學分析電子分析儀 (ESCA) 37 第四章 實驗結果與討論 40 4-1 XRD 分析結果 40 4-2 ESCA 分析結果 42 4-3 SEM分析結果 45 4-4 CD4007UB 電性量測結果 47 4-5 氫離子感測量測結果 51 4-6 銅離子感測量測結果 61 4-7 鉛離子感測量測結果 71 4-8 電性綜合分析 81 4-8-1 離子感測靈敏度比較 81 4-8-2 電性數據推測 83 4-8-3 電雙層造成的影響 86 4-8-4 NMOS 與PMOS 對Site-Binding造成的影響 89 第五章 結論 93 第六章 參考文獻 95

    [1]中華民國飲用水水質標準第三條修正條文
    [2]行政院環境保護署環境檢驗所-環境檢測方法
    [3] L.L. Chi a, J.C. Chou, W.Y. Chung , T.P. Sun, S.K. Hsiung, Study on extended gate field effect transistor with tin oxide sensing membrane, Materials Chemistry and Physics 63 (2000) 19–23
    [4]Y.L. Chin, J.C. Chou, Z. C. Lei, T. P. Sun, S.K. Hsiung, Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 6311–6315.
    [5] P. D. Batista and M. Mulato, ZnO extended-gate field-effect transistors as pH sensors, APPLIED PHYSICS LETTERS 87, 143508 (2005) ]
    [6] L.L. Chi a, J.C. Chou, W.Y. Chung , T.P. Sun, S.K. Hsiung, Study of indium tin oxide thin film for separative extended gate ISFET, Materials Chemistry and Physics 70 (2001) 12–16
    [7] J.F. Hsu, B.R. Huang, C.S. Huang, H.L. Chen, Silicon Nanowires as pH Sensor, Japanese Journal of Applied Physics Vol. 44, No. 4B, 2005, pp. 2626–2629.
    [8] C.W. Pan, J.C. Chou, I.K. Kao, T.P. Sun, S.K. Hsiung, Using Polypyrrole as the Contrast pH Detector to Fabricate a Whole Solid-State pH Sensing Device, IEEE SENSORS JOURNAL, Vol. 3, No. 2, APRIL 2003
    [9] J.C. Chen, J.C. Chou, T.P. Sun, S.K. Hsiung, Portable urea biosensor based on the extended-gate field effect transistor, Sensors and Actuators B 91 (2003) 180–186.
    [10] P. Bergveld, Development of an Ion-sensitive Solid State Device for Neurophysiological Measurements, IEEE Trans. on Bio-Med. Eng. (1970) 70-71.
    [11] C.D. Fung, P.W. Cheung, W.H. Ko, A generalized theory of an electrolyte-insulator-semiconductor filed-effect transistor, IEEE Trans. Electron Devices, vol. ED-33, No.1, (1986) 8-18.
    [12] Prof.Dr.Ir.P.Bergveld Em, ISFET, Theory and Practice, IEEE SENSOR CONFERENCE TORONTO, OCTOBER 2003.
    [13] D.E. Yate, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Juournal of the Chemical Society Faraday Transactions I 70, 1974, pp. 1807-1818.
    [14] L.J. Bousse, N.F> de Rooij and p. Bergveld, Operation of Chemically sensitive Field-Electrolyte Transistors as a Function of the Insulator-Electrolyte Interface, IEEE Trans. Electron Devices. ED-30 (1983) 1263-1270
    [15] M.N. Niu, X.F. Ding, Q.Y. Tong, Effect of Two Types of Surface Sites on the Characteristics of Si3N4-Gate pH-ISFETs, Sensors and Actuators, B37 (1996) 13-17.
    [16] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, The extended gate chemical sensitive field effect transistor as multi-species microprobe, Sensors and Actuators, 4 (1983) 291-298.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE