簡易檢索 / 詳目顯示

研究生: 鄭瑞賢
Jheng, Ruei-Sian
論文名稱: 考慮支配關係之空間上的top-k查詢
On spatial top-k queries considering dominating relationship
指導教授: 陳良弼
口試委員: 吳宜鴻
彭文志
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 24
中文關鍵詞: 支配查詢
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 給定一組在每個領域都有參數的物件,如果在每個維度裡面物件a沒有比物件b更壞,那我們說一個物件b被另一個物件a支配,,並在至少在一個維度有比他更好。天際線查詢回傳那些沒有被其他物件支配的物件。在一個城市裡面給定一些現有餐廳和候選預定地來開設新餐廳,那裡每家餐館和候選地方都有它在不同領域的表現分數,例如,便利的停車位。人民居住在城市裡有個可接受的距離r來選擇一家餐館用餐。此外,假設人們會去選擇這些表現較好的天際線餐廳。在這篇論文中,我們要找到擁有最多潛在的客戶的top-k候選地。我們提出了三種不同的索引結構,四個性質,並且提出兩種方法能夠有效地解決這個問題。實驗結果表明,我們的方法可以生產出高品質的成果。


    Given a set of criteria, an object o is defined to dominate another object o' if o is no worse than o' in each criterion and has better outcomes in at least a specific criterion. A skyline query returns each object that is not dominated by any other objects. Given the existing restaurants and the candidate places for opening a new restaurant in a city, where each restaurant and candidate place has its rank on a set of criteria, e.g., convenience of parking, and people who reside in the city and a distance r acceptable for people to choose a restaurant to have their meals. Moreover, assume people will choose the skyline restaurants. In this thesis, we want to find the top-k candidate places that have the most potential customers. We propose three different indexing structures, four properties, and two methods to efficiently solve this problem. Experiment results demonstrate that our approach can produce high quality outcomes.

    Acknowledgement i Abstract ii Table of Contents iii List of Figures iv 1. Introduction 1 2. Preliminaries 3 2.1. Problem formulation 3 3. Approach to top-k queries considering dominating relationship 4 3.1. Index structure of BCR method 4 3.2. The BCR Method 4 3.3. Index structure of ECE method 6 3.3.1. Amount-quadtree for customers 6 3.3.2. Superiority-quadtree for competitors 7 3.4. The ECE method 7 4. Performance Evaluation 12 4.1. Experiment Setup 12 4.2. Experiment Results 14 5. Conclusions 22 6. References 23

    [RandD] Random dataset generator for SKYLINE operator evaluation: http://randdataset.projects.postgresql.org/
    [Gargantini82] Gargantini, I.:An effective way to represent quadtrees, In: Proceedings of Communications of the ACM, vol. 25, no. 12, pp. 905, (1982)
    [Guttman84] Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proceedings of the 1984 ACM SIGMOD international conference on Management of data, pp. 47, (1984)
    [BKS01]Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th
    International Conference on Data Engineering, ICDE 2001, Heidelberg, Germany, pp. 421, (2001)
    [TEO01]Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings
    of the 27th International Conference on Very Large Data Bases, VLDB 2001, Roma, Italy,
    pp. 301, 27th Intern (2001)
    [CGG03] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of
    the 19th International Conference on Data Engineering, ICDE 2003, Bangalore, India, pp.717, (2003)
    [GSG05] Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In:
    Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005,
    Trondheim, Norway, pp. 229, (2005)
    [PTF05] Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. In: Proceedings of the ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005, Pages 41, (2005)
    [BCP06] Bartolini, I., Ciaccia, P., Patella, M.: SaLSa: Computing the skyline without scanning the
    whole sky. In: Proceedings of the 2006 ACM International Conference on Information and
    Knowledge Management, CIKM 2006, Arlington, Virginia, USA, pp. 405, (2006)
    [LZL07] Lee, K.C.K., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z order. In:
    Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB 2007,
    Vienna, Austria, pp. 279 Internation (2007)
    [ZMC09] Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based
    space partitioning. In: Proceedings of the 2009 ACM SIGMOD International Conference
    on Management of Data, SIGMOD 2009, Providence, Rhode Island, pp. 483, (2009)
    [BSK01]Borzsonyi, S., Stocker, K., Kossmann, D.: The skyline operator. In: Proceedings of ICDE, Heidelberg, Germany, April 2-6, pp. 421–430 (2001) ACM, vol. 25, no. 12, pp. 905, (2001)
    [DS07] Dellis, E. and Seeger, B.: Efficient Computation of Reverse Skyline Queries. In: Proceedings of Proc. 33rd Int’l Conf. Very Large Data Bases, pp. 291-302, 2007. Data Eng., pp.86, (2007)
    [LYZ07] Lin, X., Yuan Y., Zhang, Q., and Zhang, Y.: Selecting Stars: The k Most Representative Skyline Operator. In: Proceedings of Proc. 2007 ICDE, Istanbul, pp.86, (2007)
    [PZM03]Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network Databases. In: Proceedings of International Conference on Very Large Data Bases, pp. 802 (2003)
    [JMD03] Zhang, J., Zhu, M., Papadias, D., Tao, Y., and Lee D.L.: Location-based spatial queries.
    In: Proceedings of ACM SIGMOD2003, June 9-12, San Diego (2003)
    [DZS07] Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In:
    Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, Istanbul, Turkey, pp. 796, (2007)
    [CL09] Chen, L., Lian, X.: Efficient processing of metric skyline queries. In: Proceedings of IEEE Trans. Knowl. Data Eng. TKDE, 21(3), pp. 351. Knowl.oce (2009)
    [FJZ09] Fuhry, D., Jin, R., Zhang, D.: Efficient skyline computation in metric space. In: Proceedings
    of the 12th International Conference on Extending Database Technology, EDBT 2009, Saint-Petersburg, Russia, pp. 1042, (2009)
    [KM00] Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest
    neighbor queries. In: Proceedings of SIGMOD, pp. 201 (2000)
    [KMC03] Lin, K.I., Nolen, M., Yang, C.:Applying bulk insertion techniques for dynamic reverse nearest neighbor problems. In: Proceedings of IDEAS, pp. 290, (2003)
    [IDA00] Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor
    queries for dynamic databases. In: Proceedings of ACMSIGMOD Workshop (2000)
    [SRA01] Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery
    of influence sets in frequently updated databases. In: Proceedings of VLDB (2001)
    [TPL04] Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary
    dimensionality. In: Proceedings of VLDB (2004)
    [WYC08] Wu,W.,Yang, F., Chan, C.Y., Tan,K.-L.: Finch: Evaluating reverse
    k-nearest-neighbor queries on location data. In: Proceedings of VLDB (2008)
    [YL01] Yang, C., Lin, K.-I.: An index structure for efficient reverse nearest
    neighbor queries. In: Proceedings of ICDE (2001)
    [MX13] Muhammad, A.C., Lin, X., Zhang, W., Zhang, Y.:A safe zone based approach for monitoring moving skyline queries. In: Proceedings of EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy (2013)
    [MLX10] Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., and Wang, W.: Multi-guarded safe zone: An effective technique to monitor moving circular range queries. In: Proceedings of ICDE, (2010)
    [KMS07] Kang, J.M., Mokbel, M.F., Shekhar, S., Xia, T., and Zhang, D.: Continuous evaluation of monochromatic and bichromatic reverse nearest neighbors. In: Proceedings of ICDE, (2007)
    [NZT08] Nutanong, S., Zhang, R., Tanin, E., and Kulik, L.: The v*-diagram: a query-dependent approach to moving knn queries. In: Proceedings of PVLDB '08, August 23-28, 2008, Auckland, New Zealand (2008)
    [TZ06] Xia, T. and Zhang, D.: Continuous reverse nearest neighbor monitoring.
    In: Proceedings of ICDE, pp 77, (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE