研究生: |
林柏毅 Lin, Po-Yi |
---|---|
論文名稱: |
胃幽門螺旋桿菌26695脂多醣生合成缺失影響外膜囊泡所攜帶致病因子之研究 Characterization of outer membrane vesicles isolated from Helicobacter pylori 26695 defective in lipopolysaccharide inner core biosynthesis, CagA or VacA production |
指導教授: | 高茂傑 |
口試委員: |
高茂傑
藍忠昱 殷献生 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 胃幽門螺旋桿菌 、脂多醣 、外膜囊泡 |
外文關鍵詞: | Helicobacter pylori, lipopolysaccharide, outer membrane vesicles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃幽門桿菌為一螺旋狀的微耗氧革蘭氏陰性菌,主要寄居在胃部黏膜層的上皮細胞,是引起胃癌的危險因子。脂多醣 (lipopolysaccharide) 被認為是與胃幽門桿菌粘附,和在受感染的宿主上具有調節免疫反應的能力。此革蘭氏陰性菌在各個成長階段中,連續地釋放出外膜囊泡(outer membrane vesicles),且在囊泡構造上含有脂多醣,其潛在作用與細菌的生存和致病機制有極大相關性。
先前,我們實驗室發現發現 HP0859 基因可轉譯成 ADP-L-glycero-D- manno-heptose-6-epimerase,為參與 ADP-L-D-heptose 生合成途徑所需酵素之一。在本篇研究報告中,我們進一步發現 HP0859 基因缺失的突變菌株不僅表現出了被截短的脂多糖結構,而且其外膜囊泡的產量大幅降低。令人驚訝地,在胃幽門桿菌中主要的兩種毒素蛋白蛋白,cytotoxin associated gene A protein (CagA) 和 vacuolating cytotoxin A protein (VacA),也也同時被發現存在胃幽門桿菌 26695 正常野生菌株所產生的外膜囊泡中。但是在 HP0859 基因缺失的突變菌株所產生的外膜囊泡中,此兩種毒素蛋白顯著性地減少。為了進一步探討脂多醣結構的改變在外膜囊泡的形成及對 CagA/VacA 功能上的影響, vacA 基因缺失的突變菌株、 cagA 基因缺失的突變菌株和 vacA/cagA 雙基因缺失的突變菌株也一同被建構完成。並且從建構的突變菌株群萃取其外膜囊泡後,與胃腺癌細胞 (AGS cells) 共同培養,進一步探討感染後的現象。胃腺癌細胞在與胃幽門桿菌正常野生菌株所產生的外膜囊泡共同培養後,胃腺癌細胞呈典型的蜂鳥狀形態及細胞空泡形成。此外,當胃腺癌細胞被 cagA 基因缺失的突變菌株所產生的外膜囊泡感染後,胃腺癌細胞顯著減少了蜂鳥狀的細胞外型。當胃腺癌細胞與 vacA 基因缺失的突變菌株所產生的外膜囊泡共同培養後,胃腺癌細胞的細胞空泡形成的現象大量減少了。當胃腺癌細胞與 HP0859 基因缺失的突變菌株所產生的外膜囊泡共同培養後,細胞型狀並沒有顯著性的改變。當胃腺癌細胞與基因缺失的突變株群的外膜囊泡共同培養後,我們也進行了總活性氧化物 (total reactive oxygen species)、粒線體活性氧化物 (mitochondrial reactive oxygen species) 及粒線體細胞膜電位 (mitochondrial membrane potential)的分析實驗。我們發現在胃幽門桿菌所產生的外膜囊泡上致病因子可能存在著拮抗作用,可能為協助細菌能夠更長時間的感染宿主,使宿主不會因單一毒素過度傷害而提早死亡。
Helicobacter pylori, a Gram-negative, spiral-shaped, microaerophilic bacterium that can inhabit various areas of human stomach and duodenum, has been considered as a risk for inducing human gastric cancer. Lipopolysaccharide (LPS) is thought to be associated with H. pylori adhesion and has the capability of modulating the immune response of infected hosts. This bacterium continuously sheds outer membrane vesicles (OMVs) during different phases of growth and these vesicles containing LPS have been suggested to have potential roles in bacterial survival and pathogenesis.
Previously, our laboratory has demonstrated that the hp0859 gene encodes an ADP-L-glycero-D-manno-heptose-6-epimerase, which is involved in the synthesis of ADP-L-D-heptose for the assembly of LPS inner core in H. pylori. In this study, we first demonstrated that the HP0859 knockout mutant (WTΔ0859) not only exhibited a truncated LPS structure but also decreased its OMV production level. Surprisingly, two major H. pylori toxins, cytotoxin associated gene A (CagA) and vacuolating cytotoxin A (VacA), were both present in OMVs derived from H. pylori 26695 wild type strain but significantly lesser amounts were present in OMVs derived from WTΔ0859. To further investigate the effects of the LPS structure on OMV formation and CagA/VacA functions, WTΔVacA, WTΔCagA, and WTΔVacA/ΔCagA double knockout mutants were also constructed. The OMVs isolated from these mutants were co-cultured with AGS cells for infection studies. The AGS cells showed a typical hummingbird phenotype and cellular vacuolation after co-culturing with OMVs derived from H. pylori 26695 wild type strain. In contrast, the AGS cells significant lost the hummingbird phenotype when infected with OMVs isolated from the WTΔCagA, and the vacuolation phenomenon significant reduced when co-culturing with OMVs from WTΔVacA. When the AGS cells were treated with OMVs from WTΔ0859, they neither showed the hummingbird phenotype nor cellular vacuolation morphological change. We also conducted total reactive oxygen species (tROS), mitochondrial reactive oxygen species (mROS) and mitochondrial membrane potential (MMP) assays on AGS cells co-culturing with OMVs derived from these mutants, and found that there may exist a functional antagonism between the OMV-associated CagA and the OMV-associated VacA to control the entry of these two toxins into the host cell along with affecting the mitochondrial functions of the infected gastric epithelial cells.
1. Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315 (1984).
2. Goodwin, C. S., McCulloch, R. K., Armstrong, J. A. & Wee, S. H. Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19, 257-267 (1985).
3. Lambert, M. A., Patton, C. M., Barrett, T. J. & Moss, C. W. Differentiation of Campylobacter and Campylobacter-like organisms by cellular fatty acid composition. J Clin Microbiol 25, 706-713 (1987).
4. Goodwin, C. S., McConnell, W., McCulloch, R. K., McCullough, C., Hill, R., Bronsdon, M. A. & Kasper, G. Cellular fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other campylobacters. J Clin Microbiol 27, 938-943 (1989).
5. Whary, M. T. & Fox, J. G. Natural and experimental Helicobacter infections. Comp. Med. 54, 128-158 (2004).
6. Eaton, K. A., Morgan, D. R. & Krakowka, S. Motility as a factor in the colonisation of gnotobiotic piglet by Helicobacter pylori. J. Med. Microbiol. 37, 123-127 (1992).
7. Nomura, A., Stemmermann, G. N., Chyou, P. H., Perez-Perez, G. I. & Blaser, M. J. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann. Intern. Med. 120, 977-981 (1994).
8. Olson, J. W. & Maier, R. J. Molecular hydrogen as an energy source for Helicobacter pylori. Science 298, 1788-1790 (2002).
9. Stark, R. M., Gerwig, G. J., Pitman, R. S., Potts, L. F., Williams, N. A., Greenman, J., Weinzweig, I. P. et al. Biofilm formation by Helicobacter pylori. Lett. Appl. Microbiol. 28, 121-126 (1999).
10. Parsonnet, J., Friedman, G. D., Vandersteen, D. P., Chang, Y., Vogelman, J. H., Orentreich, N. & Sibley, R. K. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127-1131 (1991).
11. Parsonnet, J., Hansen, S., Rodriguez, L., Gelb, A. B., Warnke, R. A., Jellum, E., Orentreich, N. et al. Helicobacter pylori infection and gastric lymphoma. N. Engl. J. Med. 330, 1267-1271 (1994).
12. Taneike, I., Tamura, Y., Shimizu, T., Yamashiro, Y. & Yamamoto, T. Helicobacter pylori intrafamilial infections: change in source of infection of a child from father to mother after eradication therapy. Clin. Diagn. Lab. Immunol. 8, 731-739 (2001).
13. Hejazi, R. & Amiji, M. Stomach-specific anti-H. pylori therapy. I: Preparation and characterization of tetracyline-loaded chitosan microspheres. Int. J. Pharm. 235, 87-94 (2002).
14. Thor, P. J. & Blaut, U. Helicobacter pylori infection in pathogenesis of gastroesophageal reflux disease. J Physiol Pharmacol 57 Suppl 3, 81-90 (2006).
15. van der Hulst, R. W., Keller, J. J., Rauws, E. A. & Tytgat, G. N. Treatment of Helicobacter pylori infection: a review of the world literature. Helicobacter 1, 6-19 (1996).
16. Mirbagheri, S. A., Hasibi, M., Abouzari, M. & Rashidi, A. Triple, standard quadruple and ampicillin-sulbactam-based quadruple therapies for H. pylori eradication: a comparative three-armed randomized clinical trial. World J. Gastroenterol. 12, 4888-4891 (2006).
17. Megraud, F. Antibiotic resistance in Helicobacter pylori infection. Br Med Bull 54, 207-216 (1998).
18. Shah, S., Qaqish, R., Patel, V. & Amiji, M. Evaluation of the factors influencing stomach-specific delivery of antibacterial agents for Helicobacter pylori infection. J Pharm Pharmacol 51, 667-672 (1999).
19. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547 (1997).
20. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180 (1999).
21. Oh, J. D., Kling-Backhed, H., Giannakis, M., Xu, J., Fulton, R. S., Fulton, L. A., Cordum, H. S. et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A 103, 9999-10004 (2006).
22. Atherton, J. C., Peek, R. M., Jr., Tham, K. T., Cover, T. L. & Blaser, M. J. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112, 92-99 (1997).
23. Padan, E., Zilberstein, D. & Schuldiner, S. pH homeostasis in bacteria. Biochim Biophys Acta 650, 151-166 (1981).
24. Ottemann, K. M. & Lowenthal, A. C. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70, 1984-1990 (2002).
25. Schreiber, S., Konradt, M., Groll, C., Scheid, P., Hanauer, G., Werling, H. O., Josenhans, C. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A 101, 5024-5029 (2004).
26. Eaton, K. A., Brooks, C. L., Morgan, D. R. & Krakowka, S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59, 2470-2475 (1991).
27. Clyne, M., Labigne, A. & Drumm, B. Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect. Immun. 63, 1669-1673 (1995).
28. Scott, D. R., Weeks, D., Hong, C., Postius, S., Melchers, K. & Sachs, G. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114, 58-70 (1998).
29. Peek, R. M., Jr. & Crabtree, J. E. Helicobacter infection and gastric neoplasia. J Pathol 208, 233-248 (2006).
30. Amieva, M. R. & El-Omar, E. M. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134, 306-323 (2008).
31. Atherton, J. C. & Blaser, M. J. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Invest. 119, 2475-2487 (2009).
32. Backert, S., Clyne, M. & Tegtmeyer, N. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell communication and signaling : CCS 9, 28 (2011).
33. Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P. R., Naumann, M. et al. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2, 155-164 (2000).
34. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W. & Haas, R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500 (2000).
35. Stein, M., Rappuoli, R. & Covacci, A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A 97, 1263-1268 (2000).
36. Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 4, 688-694 (2004).
37. Hug, I. & Feldman, M. F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 21, 138-151 (2011).
38. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635-700 (2002).
39. Moran, A. P. Lipopolysaccharide in bacterial chronic infection: insights from Helicobacter pylori lipopolysaccharide and lipid A. Int. J. Med. Microbiol. 297, 307-319 (2007).
40. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67, 593-656 (2003).
41. Moran, A. P., Helander, I. M. & Kosunen, T. U. Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J Bacteriol 174, 1370-1377 (1992).
42. Walsh, E. J. & Moran, A. P. Influence of medium composition on the growth and antigen expression of Helicobacter pylori. J Appl Microbiol 83, 67-75 (1997).
43. Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J. & Moran, A. P. Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry 35, 2489-2497 (1996).
44. Green, C. The ABO, Lewis and related blood group antigens; a review of structure and biosynthesis. FEMS Microbiol. Immunol. 1, 321-330 (1989).
45. Haslam, S. M., Coles, G. C., Morris, H. R. & Dell, A. Structural characterization of the N-glycans of Dictyocaulus viviparus: discovery of the Lewis(x) structure in a nematode. Glycobiology 10, 223-229 (2000).
46. Appelmelk, B. J., Simoons-Smit, I., Negrini, R., Moran, A. P., Aspinall, G. O., Forte, J. G., De Vries, T. et al. Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect. Immun. 64, 2031-2040 (1996).
47. M Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O. & Jansson, P. E. Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. Pylori lipopolysaccharides. J Biol Chem 277, 5785-5795 (2002).
48. Castillo-Rojas, G., Mazari-Hiriart, M. & Lopez-Vidal, Y. [Helicobacter pylori: focus on CagA and VacA major virulence factors]. Salud Publica Mex. 46, 538-548 (2004).
49. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333 (1999).
50. Olbermann, P., Josenhans, C., Moodley, Y., Uhr, M., Stamer, C., Vauterin, M., Suerbaum, S. et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet 6, e1001069 (2010).
51. Segal, E. D., Falkow, S. & Tompkins, L. S. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A 93, 1259-1264 (1996).
52. Sharma, S. A., Tummuru, M. K., Blaser, M. J. & Kerr, L. D. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol 160, 2401-2407 (1998).
53. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. & Hatakeyama, M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686 (2002).
54. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W. J. & Covacci, A. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43, 971-980 (2002).
55. Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T. F., Birchmeier, W. & Naumann, M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 161, 249-255 (2003).
56. Mimuro, H., Suzuki, T., Tanaka, J., Asahi, M., Haas, R. & Sasakawa, C. Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell 10, 745-755 (2002).
57. Suzuki, M., Mimuro, H., Suzuki, T., Park, M., Yamamoto, T. & Sasakawa, C. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med 202, 1235-1247 (2005).
58. Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., Lu, H. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330-333 (2007).
59. Bourzac, K. M. & Guillemin, K. Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol 7, 911-919 (2005).
60. Rieder, G., Fischer, W. & Haas, R. Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr. Opin. Microbiol. 8, 67-73 (2005).
61. Backert, S., Tegtmeyer, N. & Selbach, M. The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter 15, 163-176 (2010).
62. Tegtmeyer, N., Wessler, S. & Backert, S. Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 278, 1190-1202 (2011).
63. Cover, T. L., Tummuru, M. K., Cao, P., Thompson, S. A. & Blaser, M. J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem 269, 10566-10573 (1994).
64. Boquet, P. & Ricci, V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 20, 165-174 (2012).
65. Lupetti, P., Heuser, J. E., Manetti, R., Massari, P., Lanzavecchia, S., Bellon, P. L., Dallai, R. et al. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J Cell Biol 133, 801-807 (1996).
66. Cover, T. L., Hanson, P. I. & Heuser, J. E. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J Cell Biol 138, 759-769 (1997).
67. Czajkowsky, D. M., Iwamoto, H., Cover, T. L. & Shao, Z. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci U S A 96, 2001-2006 (1999).
68. Szabo, I., Brutsche, S., Tombola, F., Moschioni, M., Satin, B., Telford, J. L., Rappuoli, R. et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J 18, 5517-5527.
69. Ricci, V. et al. High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol Biol Cell 11, 3897-3909 (2000).
70. Hennig, E. E., Butruk, E. & Ostrowski, J. RACK1 protein interacts with Helicobacter pylori VacA cytotoxin: the yeast two-hybrid approach. Biochem Biophys Res Commun 289, 103-110 (2001).
71. Fujikawa, A., Shirasaka, D., Yamamoto, S., Ota, H., Yahiro, K., Fukada, M., Shintani, T. et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nat. Genet. 33, 375-381 (2003).
72. Hisatsune, J., Nakayama, M., Isomoto, H., Kurazono, H., Mukaida, N., Mukhopadhyay, A. K., Azuma, T. et al. Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation. J Immunol 180, 5017-5027 (2008).
73. Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J. C., Contamin, S., de Thillot, V. et al. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J 19, 6361-6370 (2000).
74. Blanke, S. R. Micro-managing the executioner: pathogen targeting of mitochondria. Trends Microbiol. 13, 64-71 (2005).
75. Cover, T. L. & Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3, 320-332 (2005).
76. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099-1102 (2003).
77. Fischer, W., Prassl, S. & Haas, R. Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pylori. Curr Top Microbiol Immunol 337, 129-171 (2009).
78. Oldani, A., Cormont, M., Hofman, V., Chiozzi, V., Oregioni, O., Canonici, A., Sciullo, A. et al. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog. 5, e1000603 (2009).
79. Akada, J. K., Aoki, H., Torigoe, Y., Kitagawa, T., Kurazono, H., Hoshida, H., Nishikawa, J. et al. Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. Dis. Model. Mech. 3, 605-617 (2010).
80. Yokoyama, K., Higashi, H., Ishikawa, S., Fujii, Y., Kondo, S., Kato, H., Azuma, T. et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci U S A 102, 9661-9666 (2005).
81. Tegtmeyer, N., Zabler, D., Schmidt, D., Hartig, R., Brandt, S. & Backert, S. Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA. Cell Microbiol 11, 488-505 (2009).
82. Argent, R. H., Thomas, R. J., Letley, D. P., Rittig, M. G., Hardie, K. R. & Atherton, J. C. Functional association between the Helicobacter pylori virulence factors VacA and CagA. J Med Microbiol 57, 145-150 (2008).
83. Shames, S. R. & Finlay, B. B. Breaking the stereotype: virulence factor-mediated protection of host cells in bacterial pathogenesis. PLoS Pathog. 6, e1001057 (2010).
84. Bishop, D. G. & Work, E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 96, 567-576 (1965).
85. Fiocca, R., Necchi, V., Sommi, P., Ricci, V., Telford, J., Cover, T. L. & Solcia, E. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188, 220-226 (1999).
86. Hellman, J., Loiselle, P. M., Zanzot, E. M., Allaire, J. E., Tehan, M. M., Boyle, L. A., Kurnick, J. T. et al. Release of gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J Infect Dis 181, 1034-1043 (2000).
87. Hoekstra, D., van der Laan, J. W., de Leij, L. & Witholt, B. Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455, 889-899 (1976).
88. Rothfield, L. & Pearlman-Kothencz, M. Synthesis and assembly of bacterial membrane components. A lipopolysaccharide-phospholipid-protein complex excreted by living bacteria. J Mol Biol 44, 477-492 (1969).
89. Kadurugamuwa, J. L. & Beveridge, T. J. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177, 3998-4008 (1995).
90. Beveridge, T. J. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181, 4725-4733 (1999).
91. Kuehn, M. J. & Kesty, N. C. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19, 2645-2655 (2005).
92. Mashburn-Warren, L. M. & Whiteley, M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61, 839-846 (2006).
93. Olofsson, A., Vallstrom, A., Petzold, K., Tegtmeyer, N., Schleucher, J., Carlsson, S., Haas, R. et al. Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 77, 1539-1555 (2010).
94. Horstman, A. L. & Kuehn, M. J. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275, 12489-12496 (2000).
95. Wai, S. N., Lindmark, B., Soderblom, T., Takade, A., Westermark, M., Oscarsson, J., Jass, J. et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115, 25-35 (2003).
96. Post, D. M., Zhang, D., Eastvold, J. S., Teghanemt, A., Gibson, B. W. & Weiss, J. P. Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. J Biol Chem 280, 38383-38394 (2005).
97. Balsalobre, C., Silvan, J. M., Berglund, S., Mizunoe, Y., Uhlin, B. E. & Wai, S. N. Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 59, 99-112 (2006).
98. Tan, T. T., Morgelin, M., Forsgren, A. & Riesbeck, K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 195, 1661-1670 (2007).
99. Schaar, V., Paulsson, M., Morgelin, M. & Riesbeck, K. Outer membrane vesicles shield Moraxella catarrhalis beta-lactamase from neutralization by serum IgG. J. Antimicrob. Chemother. 68, 593-600 (2013).
100. Keenan, J., Day, T., Neal, S., Cook, B., Perez-Perez, G., Allardyce, R. & Bagshaw, P. A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol. Lett. 182, 259-264 (2000).
101. Ricci, V., Chiozzi, V., Necchi, V., Oldani, A., Romano, M., Solcia, E. & Ventura, U. Free-soluble and outer membrane vesicle-associated VacA from Helicobacter pylori: Two forms of release, a different activity. Biochem Biophys Res Commun 337, 173-178 (2005).
102. Mullaney, E., Brown, P. A., Smith, S. M., Botting, C. H., Yamaoka, Y. Y., Terres, A. M., Kelleher, D. P. et al. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin. Appl. 3, 785-796 (2009).
103. Chang, P. C., Wang, C. J., You, C. K. & Kao, M. C. Effects of a HP0859 (rfaD) knockout mutation on lipopolysaccharide structure of Helicobacter pylori 26695 and the bacterial adhesion on AGS cells. Biochem Biophys Res Commun 405, 497-502 (2011).
104. Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z. & Pease, L. R. Gene splicing by overlap extension. Methods Enzymol 217, 270-279 (1993).
105. Lefebvre, B., Formstecher, P. & Lefebvre, P. Improvement of the gene splicing overlap (SOE) method. BioTechniques 19, 186-188 (1995).
106. Horton, R. M. In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes. Methods Mol Biol 67, 141-149 (1997).
107. Haas, R., Meyer, T. F. & van Putten, J. P. Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol Microbiol 8, 753-760 (1993).
108. Rompikuntal, P. K., Thay, B., Khan, M. K., Alanko, J., Penttinen, A. M., Asikainen, S., Wai, S. N. et al. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect. Immun. 80, 31-42 (2012).
109. Thay, B., Wai, S. N. & Oscarsson, J. Staphylococcus aureus alpha-toxin-dependent induction of host cell death by membrane-derived vesicles. PLoS One 8, e54661 (2013).
110. Backert, S., Moese, S., Selbach, M., Brinkmann, V. & Meyer, T. F. Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 42, 631-644 (2001).
111. Backert, S., Schwarz, T., Miehlke, S., Kirsch, C., Sommer, C., Kwok, T., Gerhard, M. et al. Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect. Immun. 72, 1043-1056 (2004).
112. Calvino-Fernandez, M., Benito-Martinez, S. & Parra-Cid, T. Oxidative stress by Helicobacter pylori causes apoptosis through mitochondrial pathway in gastric epithelial cells. Apoptosis : an international journal on programmed cell death 13, 1267-1280 (2008).
113. Huang, X. W., Luo, R. H., Zhao, Q., Shen, Z. Z., Huang, L. L., An, X. Y., Zhao, L. J. et al. Helicobacter pylori induces mitochondrial DNA mutation and reactive oxygen species level in AGS cells. Int. J. Med. Sci. 8, 56-67 (2011).
114. Wong, A. & Cortopassi, G. A. High-throughput measurement of mitochondrial membrane potential in a neural cell line using a fluorescence plate reader. Biochem Biophys Res Commun 298, 750-754 (2002).
115. Mini, R., Annibale, B., Lahner, E., Bernardini, G., Figura, N. & Santucci, A. Western blotting of total lysate of Helicobacter pylori in cases of atrophic body gastritis. Clin. Chem. 52, 220-226 (2006).
116. Giri, D. K., Mehta, R. T., Kansal, R. G. & Aggarwal, B. B. Mycobacterium avium-intracellulare complex activates nuclear transcription factor-kappaB in different cell types through reactive oxygen intermediates. J Immunol 161, 4834-4841 (1998).
117. Schweizer, M. & Peterhans, E. Oxidative stress in cells infected with bovine viral diarrhoea virus: a crucial step in the induction of apoptosis. J Gen Virol 80 ( Pt 5), 1147-1155 (1999).
118. Sipowicz, M. A., Chomarat, P., Diwan, B. A., Anver, M. A., Awasthi, Y. C., Ward, J. M., Rice, J. M. et al. Increased oxidative DNA damage and hepatocyte overexpression of specific cytochrome P450 isoforms in hepatitis of mice infected with Helicobacter hepaticus. Am J Pathol 151, 933-941 (1997).
119. Smoot, D. T., Elliott, T. B., Verspaget, H. W., Jones, D., Allen, C. R., Vernon, K. G., Bremner, T. et al. Influence of Helicobacter pylori on reactive oxygen-induced gastric epithelial cell injury. Carcinogenesis 21, 2091-2095 (2000).
120. Davies, G. R., Simmonds, N. J., Stevens, T. R., Sheaff, M. T., Banatvala, N., Laurenson, I. F., Blake, D. R. et al. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut 35, 179-185 (1994).
121. Jacobson, M. D. Reactive oxygen species and programmed cell death. Trends Biochem. Sci. 21, 83-86 (1996).
122. Calvino Fernandez, M. & Parra Cid, T. H. pylori and mitochondrial changes in epithelial cells. The role of oxidative stress. Rev. Esp. Enferm. Dig. 102, 41-50 (2010).
123. Handa, O., Naito, Y. & Yoshikawa, T. Helicobacter pylori: a ROS-inducing bacterial species in the stomach. Inflamm Res 59, 997-1003, (2010).
124. Nicholls, D. G. Mitochondrial membrane potential and aging. Aging cell 3, 35-40 (2004).
125. Kouokam, J. C., Wai, S. N., Fallman, M., Dobrindt, U., Hacker, J. & Uhlin, B. E. Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect. Immun. 74, 2022-2030 (2006).
126. Lindmark, B., Rompikuntal, P. K., Vaitkevicius, K., Song, T., Mizunoe, Y., Uhlin, B. E., Guerry, P. et al. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol. 9, 220 (2009).
127. Baik, S. C., Kim, K. M., Song, S. M., Kim, D. S., Jun, J. S., Lee, S. G., Song, J. Y. et al. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol 186, 949-955 (2004).
128. Carlsohn, E., Nystrom, J., Karlsson, H., Svennerholm, A. M. & Nilsson, C. L. Characterization of the outer membrane protein profile from disease-related Helicobacter pylori isolates by subcellular fractionation and nano-LC FT-ICR MS analysis. J. Proteome Res. 5, 3197-3204 (2006).
129. Ellis, T. N. & Kuehn, M. J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74, 81-94 (2010).
130. Amano, A., Takeuchi, H. & Furuta, N. Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes and infection / Institut Pasteur 12, 791-798 (2010).
131. Kaparakis, M., Turnbull, L., Carneiro, L., Firth, S., Coleman, H. A., Parkington, H. C., Le Bourhis, L. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 12, 372-385 (2010).
132. Ismail, S., Hampton, M. B. & Keenan, J. I. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect. Immun. 71, 5670-5675 (2003).
133. Huang, X. W., Luo, R. H., Zhao, Q., Shen, Z. Z., Huang, L. L., An, X. Y., Zhao, L. J. et al. Helicobacter pylori induces mitochondrial DNA mutation and reactive oxygen species level in AGS cells. Int. J. Med. Sci. 8, 56-67 (2011).