簡易檢索 / 詳目顯示

研究生: 江孟儒
論文名稱: 生胚密度差異所引發之燒結曲率與應力分析
Effects of Green Density on Camber and Stress Development during Firing Low-temperature Cofired Ceramic System
指導教授: 簡朝和
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 33
中文關鍵詞: 低溫共燒陶瓷曲率燒結應力
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討硼矽玻璃(BSG)+氧化鋁(Al2O3)系統製作成的低、高生胚密度試片,於共燒時產生的曲率(camber)與應力(stress)。利用熱機械分析儀量測兩種試片在不同升溫速率下的收縮差異,以及單軸向黏度(uniaxial viscosity),並以同步照相方式觀察試片共燒時的曲率變化。將收縮率差值和曲率變化代入黏彈性模型(visco-elastic model),皆可計算不匹配應力,且兩者計算出的結果相近。由於不匹配應力遠小於燒結驅動力,共燒結構仍可達到高度緻密,共燒後的試片亦未發現任何缺陷。


    1. 簡介………………………………………………………………….1 2. 實驗方法…………………………………………………………….3 2.1 原料…………………………………………………………...3 2.2 漿料備製……………………………………………………...3 2.3 刮刀製程……………………………………………………...3 2.4 疊壓…………………………………………………………...4 2.5 收縮量量測…………………………………………………...5 2.6 曲率觀察……………………………………………………...5 2.7 單軸向黏度量測……………………………………………...5 2.8 微結構觀察…………………………………………………...6 3. 結果與討論………………………………………………………….7 3.1 LD和HD的收縮行為. ………………………………………7 3.2 曲率的發展... ………………………………………………...8 3.3 討論... ……………………………………………………….10 4. 結論... ……………………………………………………………...16 5. 參考文獻... ………………………………………………………...17

    [1] PW. Polinski, Sr., “Low Temperature Cofired Ceramic Packages for Microwave Gallium Arsenide Integrated Circuits,” US Pat. No. 4,899,118, 1990.
    [2] M. Gongora-Rubio, L. M. Solá-Laguna, P. J. Moffett and J. J. Santiago-Avilés, “The Utilization of Low Temperature Co-fired Ceramics (LTCC-ML) Technology for Meso-Scale EMS, A Simple Thermistor Based Flow Sensor,” Sensor. Actuat. A, 73 [3] 5–221 (1999).
    [3] J. H. Jean, C. R. Chang and Z. C. Chen, “Effect of Densification Mismatch on Camber Development during Cofiring Ni-Based Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 80 [9] 2401-2406 (1997).
    [4] J. H. Jean and C. R. Chang, “Camber Development during Cofiring Ag-Based Low-Dielectric-Constant Ceramic Package,” J. Mater. Res., 12 [10] 2743-2750 (1997).
    [5] J. C. Chang and J. H. Jean, “Camber Development During the Cofiring of Bi-Layer Glass-Based Dielectric Laminate,” J. Am. Ceram. Soc., 88 [5] 1165–1170 (2005).
    [6] R. T. Hsu and J. H. Jean, “Key Factors Controlling Camber Behavior During the Cofiring of Bi-Layer Ceramic Dielectric Laminates,” J. Am. Ceram. Soc., 88 [9] 2429–2434 (2005).
    [7] F. F. Lange and M. Metcalf, “Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering,” J. Am. Ceram. Soc., 66 [6] 398-406 (1983).
    [8] P. Z. Cai, D. J. Green and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: I, Experimental Observations of Processing Defects, ”J. Am. Ceram. Soc., 80 [8] 1929-1939 (1997).
    [9] P. Z. Cai, D. J. Green and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: II, Viscous Stress Computation,” J. Am. Ceram. Soc., 80 [8] 1940-1948 (1997).
    [10] J. B. Ollagnier, O. Guillon, and J. Rodel, ‘‘Viscosity of LTCC Determined by Discontinuous Sinter-Forging,’’ Int. J. Appl. Ceram. Technol., 3 [6] 437–41 (2006).
    [11] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-I. Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-2397 (1988).
    [12] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-II. Comparison of Constitutive Models,” Acta. Metall., 36 [9] 2399-2409 (1988).
    [13] S. Ho, C. Hillman, F. F. Lange and Z. Suo, “Surface Cracking in Layers under Biaxial, Residual Compressive Stress,” J. Am. Ceram. Soc., 78 [9] 2353-2359 (1995).
    [14] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-1655 (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE