簡易檢索 / 詳目顯示

研究生: 吳立夫
Wu, Li-Fu
論文名稱: A high-throughput LDPC decoder architecture using idle-cycle-free shuffled scheduling
使用無閒置周期的錯綜排程之高吞吐量低密度奇偶檢查碼解碼器架構
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員: 王忠炫
Wang, Chung-Hsuan
楊家驤
Yang, Chia-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 47
中文關鍵詞: 高吞吐量低密度奇偶檢查碼里德索羅門碼錯綜排程演算
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在通訊系統中,為達到高可靠、高品質、高效率傳輸能力,錯誤更正碼扮演著重要的角色。錯誤更正碼已經廣泛的應用在有線通訊、無線通訊與許多的儲存系統中。通過有結構特性的編碼和具效率的解碼技術,可以有效的降低位元之錯誤率,進而降低傳輸所需要的功率。錯誤更正碼技術已日漸受到重視,並被認為是達成高可靠、高品質及高效率通訊鏈路構連之有效途徑。作為錯誤更正碼的一種,低密度奇偶檢查碼的顯著的解碼效果和硬體的平行度架構設計的優勢,也讓它廣泛的應用於不同的通訊系統上。對一個高吞吐量之低密度奇偶檢查碼解碼器而言,我們將其變數節點分成幾個群組並且循序的處理它們。使用高平行度架構,在第k次的遞迴裡可能將使用第(k-2)次遞迴的訊息來更新而不是使用第(k-1)次的,而為了避免這類型的資料相依則需要閒置周期。為了解決邏輯面積提高的問題,我們提出了部分位元比較架構和兩階段比較運算單元來減少邏輯面積。根據我們的架構與排程,這個高吞吐量之低密度奇偶檢查碼解碼器在遞迴時將不需要閒置周期,而且跟其他現存的低密度奇偶檢查碼在相同效能的比較上也需要較少的周期。一個(8192, 7171)基於里德所羅門碼的低密度奇偶檢查碼,碼率為0.8753的解碼器被以CMOS 90奈米技術實現。與現存最新的解碼器比較起來,這個原創的解碼器在相同的位元錯誤率效能上能達到足可比較的硬體效能,也可以在12次的遞迴裡可以達到最高的吞吐量(40.6Gb/s)。使用提早終止解碼機制之下,吞吐量將會在8次的遞迴內提高到60.9Gb/s。


    第一章 簡介 1 第二章 低密度奇偶檢查碼與訊息傳遞解碼的回顧 5 第三章 類循環之低密度奇偶檢查碼回顧 13 第四章 解碼架構 27 第五章 結論 43

    R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. IT-8, no. 1,pp. 21-28, Jan. 1962.
    D. J. C. Mackay and R.M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Letters, vol. 33, no. 6, pp. 457-458, Mar. 1997.
    D. J. C. Mackay, “Good error correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
    “IEEE P802.3an, 10GBASE-T task force,” http://www.ieee802.org/3/an.
    “T.T.S.I digital video broadcast (DVB) second generation framing structure for broadband satellite applications,” http://www.dvb.org
    M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures for low-density parity-check codes,” in Proc. IEEE Global Communications Conf., Taipei, Taiwan, Nov. 2002, pp. 1383-1388.
    Nan Jiang, Kewu Peng, Jian Song, Chanyong Pan, and Zhixing Yang, “High-throughput QC-LDPC decoders,” IEEE Trans. On Broadcasting, vol. 55, no. 2, Jun. 2009.
    J. Zhang, M. P. C Fossorier, “Shuffled iterative decoding,” IEEE Trans. Communications. Theory, vol. 53, no. 6, pp. 209-213, Feb. 2005.
    Yeong-Luh Ueng, Chung-Jay Yang, Kuan-Chieh Wang, and Chun-Jung Chen, “A multimode shuffled iterative decoder architecture for high-rate RS-LDPC codes,” IEEE Trans. Circuits Syst. I, vol. 57, no. 10, pp. 2790-2803, Oct. 2010.
    J. Sha, J. Lin, Z. Wang, L. Li, and M. Gao, “Decoder design for RS-based LDPC codes,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 9, pp. 724-728, Sep. 2009.
    L. Liu and C.-J. R. Shi, “Sliced message passing: high throughput overlapped decoding of high-rate low-density parity-check codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3697-3710, Dec. 2008.
    Y. Chen and K. K. Parhi, “Overlapped message passing for quasi-cyclic low-density parity check codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.51, no. 6, pp. 1106-1113, Jun. 2004.
    R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533-547, Sep. 1981.
    A. J. Blansby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 404-412, Mar. 2002.
    T. Mohsenin, D. Truong, and B. Baas, “Multi-split-row threshold decoding implementations for LDPC codes,” proc. IEEE ISCAS, May 2009, pp. 2449-2452.
    A. Darabiha, A. Carusone, and F. R. Kschischang, “Power reduction techniques for LDPC decoders,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1835-1845, Aug. 2008.
    N. Onizawa, T. Hanyu, and V. C. Gaudet, “Design of high-throughput fully parallel LDPC decoders based on wire partitioning,” IEEE Tran. Very Large Scale Integer. (VLSI) Syst. vol. 18, no. 3, pp. 482-489, Mar. 2010., vol. 18, no. 3, pp. 482-489, Mar. 2010.
    I. Djurdjevic, J. Xu, K. Abdel-Ghaffar and S. Lin, “A class of low-density parity-check codes constructed based on Reed-Solomon Codes with two information symbols,” IEEE commuinications Lett., vol. 7, no. 7, pp. 317-319, July 2003.
    Zhengya Zhang, Venkat Anatharam, Martin J. Wainwright, and Borivoje NiKolic, “An efficient 10GBASE-T ethernet LDPC decoder design with low error floors,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 843-855, July 2010.
    M. Fossorier, M. Mihaljevic, and H. Imai,“Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun.,} vol.~47, pp.~673-680, May. 1999.
    J. Chen and M. Fossorier,“Density evolution for two improved BP-based decoding algorithms of LDPC codes,” IEEE Commun. Lett., vol.~6, pp. 208-210, May. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE