簡易檢索 / 詳目顯示

研究生: 陳依婷
論文名稱: 由五維Split Fermion模型及Zee模型探討微中子質量
Neutrino Masses Through Zee Mechanism in 5D Split Fermion Model
指導教授: 張維甫
Chang, We-Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 49
中文關鍵詞: 微中子震盪額外空間
外文關鍵詞: Neutrino oscillation, Zee Model, Extra dimensions, Split fermion Model, PMNS matrix, Anthropic Principle
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微中子震盪是一個有趣且重要的現象,它代表微中子帶有質量,並因為其弱作用力本徵態與質量本徵態並不一致, 所以微中子在運動過程中,會在不同弱作用力本徵態之間互相震盪。標準模型無法解釋此一現象,所以我們需要新的物理模型。
    為了解釋微中子質量來源,我們引進 Zee 模型以及額外空間。首先,我們假設除了原本的四維空間中,還存在一個額外的第五維度,然後計算五維空間中的 Zee 模型,得到產生微中子的Majorana 質量型式。接下來,利用Split Fermion 模型,將費米子固定在此五維空間的一個四維膜上,而希格斯玻色子則可以在第五維空間中自由傳遞,再由此計算出微中子質量型式當中的一些參數型式。接著利用轉換矩陣 PMNS 矩陣,最後我們可以
    計算帶電輕子的質量,微中子的質量本徵值以及混合角度等等的分布範圍。根據人擇原理,將上面所算的結果跟相關實驗值比較,我們得到四組可以包含實驗數據的結果。最後我們再計算五個輕子數不守恆衰變過程的branch ratio,結果也符合實驗限制。所以推測這是個可能的模型。


    The phenomenon of neutrino oscillation implies that neutrinos have masses, and the flavor eigenbasis is not the mass eigenbasis, so neutrinos oscillate between different flavor states while traveling. Thus it is beyond the Standard Model, and it calls for new physics.Here we
    study the Zee model and Extra dimensions to explain the neutrino oscillation. First, suppose there exists a compactied fth dimension, and neutrinos have Ma jorana masses through the 5 dimensional Zee model. Second, assume the fermions are localized on a 4 dimensional brane embedded in the 5 dimensional space-time by the Split Fermion model, while the higgs are free to propagate along the extra dimension. We can get the forms of parameters in the neutrino mass matrix from Zee model. Then, transforming with the PMNS matrix, we found ranges of charged lepton masses, neutrino masses and mixing angles, and so on. Based on Anthropic Principle, we compare them to the experiment data, and we get 4 possible solutions. We also check the branch ratios of 5 lepton flavor violating processes, and they also satisfy the experiment constraints. Thus this is a possible model.

    1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Neutrino Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.2.1 Large Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Universal Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Split fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Neutrino oscillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Neutrino oscillation, mass, and mixing . . . . . . . . . . . . . . . . . . .7 2.1.1 The experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Models to generate neutrino masses . . . . . . . . . . . . . . . . . . . .11 2.2.1 Seesaw mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Zee model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 One Flat Extra Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1.1 KK decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Free scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3.3 Free Dirac fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3.4 Split fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 3.5 Free gauge fields-U(1) gauge in UED . . . . . . . . . . . . . . . . . . .21 3.6 Yang-Mills theory –SU(2) gauge in UED . . . . . . . . . . . . . . . . 22 3.7 Higgs mechanism in UED . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 Fermions in universal extra dimension . . . . . . . . . . . . . . . . . . 27 4 Discussion and Result . . . . . . . . . . . . . . . . . .29 4.1 Zee model under one extra dimension . . . . . . . . . . . . . . . . . .29 4.1.1 New parameterization of the calculation . . . . . . . . . . . . . . . 32 4.2 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Checking branching ratios of lepton flavor violating processes . . . . . . . . . 36 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 A Spinor representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 A.1 Spinor representations in even dimensions . . . . . . . . . . . . . . . 39 A.2 Weyl representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A.3 Spinor representations in odd dimensions . . . . . . . . . . . . . . . . 42 A.4 Majorana spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 A.5 C, P, T in different dimensions . . . . . . . . . . . . . . . . . . . . . . . 44 A.5.1 Charge conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A.5.2 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A.5.3 Time reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    [1] S. M. Bilenky. Bruno pontecorvo: mister neutrino. 2006.
    [2] Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali. The hierarchy problem and new dimensions at a millimeter. Physics Letters B, 429:263, 1998.
    [3] Nima Arkani-Hamed and Martin Schmaltz. Hierarchies without symmetries from extra dimensions. Phys. Rev. D, 61(3):033005, Jan 2000.
    [4] C. Amsler, M. Doser, M. Antonelli, D.M. Asner, K.S. Babu, H. Baer, H.R. Band, R.M. Barnett, E. Bergren, J. Beringer, G. Bernardi, W. Bertl, H. Bichsel, O. Biebel, P. Bloch, E. Blucher, S. Blusk, R.N. Cahn, M. Carena, C. Caso, A. Ceccucci, D. Chakraborty, M.- C. Chen, R.S. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, A. de Gouva,
    T. DeGrand, B. Dobrescu, M. Drees, D.A. Edwards, S. Eidelman, V.D. Elvira, J. Erler, V.V. Ezhela, J.L. Feng, W. Fetscher, B.D. Fields, B. Foster, T.K. Gaisser, L. Garren, H.-J. Gerber, G. Gerbier, T. Gherghetta, G.F. Giudice, M. Goodman, C. Grab, A.V. Gritsan, J.-F. Grivaz, D.E. Groom, M. Gr?newald, A. Gurtu, T. Gutsche, H.E. Haber, K. Hagiwara, C. Hagmann, K.G. Hayes, J.J. Hernndez-Rey, K. Hikasa, I. Hinchliffe,
    A. Hcker, J. Huston, P. Igo-Kemenes, J.D. Jackson, K.F. Johnson, T. Junk, D. Karlen, B. Kayser, D. Kirkby, S.R. Klein, I.G. Knowles, C. Kolda, R.V. Kowalewski, P. Kreitz, B. Krusche, Yu.V. Kuyanov, Y. Kwon, O. Lahav, P. Langacker, A. Liddle, Z. Ligeti, C.-J. Lin, T.M. Liss, L. Littenberg, J.C. Liu, K.S. Lugovsky, S.B. Lugovsky, H. Mahlke, M.L. Mangano, T. Mannel, A.V. Manohar, W.J. Marciano, A.D. Martin, A. Masoni, D. Milstead, R. Miquel, K. Mnig, H. Murayama, K. Nakamura, M. Narain, P. Na- son, S. Navas, P. Nevski, Y. Nir, K.A. Olive, L. Pape, C. Patrignani, J.A. Peacock,
    A. Piepke, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B.N. Ratcliff, B. Renk, P. Richard- son, S. Roesler, S. Rolli, A. Romaniouk, L.J. Rosenberg, J.L. Rosner, C.T. Sachra jda, Y. Sakai, S. Sarkar, F. Sauli, O. Schneider, D. Scott, W.G. Seligman, M.H. Shaevitz, T. Sjstrand, J.G. Smith, G.F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S.L. Stone, T. Sumiyoshi, M. Tanabashi, J. Terning, M. Titov, N.P. Tkachenko, N.A. Trn- qvist, D. Tovey, G.H. Trilling, T.G. Trippe, G. Valencia, K. van Bibber, M.G.
    Vincter, P. Vogel, D.R. Ward, T. Watari, B.R. Webber, G. Weiglein, J.D. Wells, M. Whalley, A. Wheeler, C.G. Wohl, L. Wolfenstein, J. Womersley, C.L. Woody, R.L. Workman, A. Yamamoto, W.-M. Yao, O.V. Zenin, J. Zhang, R.-Y. Zhu, P.A. Zyla, G. Harper, V.S. Lugovsky, and P. Schaffner. Review of particle physics. Physics Letters B, 667(1- 5):1 – 6, 2008. Review of Particle Physics.
    [5] Andre de Gouvea. 2004 tasi lectures on neutrino physics. 2004.
    [6] R. D. McKeown and P. Vogel. Neutrino masses and oscillations: Triumphs and challenges. Physics Reports, 394:315, 2004.
    [7] A. Zee. A theory of lepton number violation and neutrino majorana masses. Physics Letters B, 93(4):389 – 393, 1980.
    [8] Xiao-Gang He. Is the zee model neutrino mass matrix ruled out? European Physical Journal C, 34:371, 2004.
    [9] C. Jarlskog, M. Matsuda, S. Skadhauge, and M. Tanimoto. Zee mass matrix and bi-maximal neutrino mixing. Physics Letters B, 449:240, 1999.
    [10] Csaba Csaki. Tasi lectures on extra dimensions and branes. 2004.
    [11] Torsten Bringmann. Cosmological aspects of universal extra dimensions. page 111, 2005.
    [12] Thomas Appelquist, Hsin-Chia Cheng, and Bogdan A. Dobrescu. Bounds on universal extra dimensions. Physical Review D, 64:035002, 2001.
    [13] M. Fukugita and A. Suzuki. Physics And Astrophysics Of Neutrinos. Springer-Verlag (Tokyo, New York), 1994.
    [14] We-Fu Chang and John N. Ng. Lepton flavor violation in extra dimension models. Phys. Rev. D, 71(5):053003, Mar 2005.
    [15] Joseph Gerard Polchinski. String Theory: Superstring theory and beyond. Cambridge University Press, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE