研究生: |
黃令祺 Huang, Ling Chi |
---|---|
論文名稱: |
貝氏定理影像重建演算法用於飛行時間正子斷層掃描之研究 A Study of Bayesian Image Reconstruction Algorithms for Time-of-Flight Positron Emission Tomography |
指導教授: |
許靖涵
Hsu, Ching Han |
口試委員: |
蕭穎聰
Hsiao, Ing Tsung 卓奕均 Cho, I Chun |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 貝氏定理 、影像重建演算法 、飛行時間正子斷層掃描 |
外文關鍵詞: | Bayes' theorem, Image Reconstruction Algorithms, Time-of-Flight PET |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
貝氏定理影像重建演算法是1990年Green將最大相似度評估法和最大事後機率評估法結合所產生的一步延遲期望值最大演算法(One-Step-Late Expectation Maximum, OSL),使用在正子斷層掃描上進行影像重建時可以搭配不同的影像事前機率(Image prior)來做不同方式的雜訊抑制,但在這個過程中影像事前機率的影響有可能會使重建影像過度平滑(over-smoothing)或是在邊緣部分產生其他問題。飛行時間正子斷層掃描(Time-of-Flight PET)能提供互毀光子被偵檢器接收到的時間差,增加重建影像的解析度,提升影像訊雜比。在本研究中提出將貝氏定理影像重建演算法用於重建TOF PET影像,包含TOF-OSL與TOF-OSEM-OSL重建法,並和傳統PET使用OSL與OSEM-OSL重建法所重建的影像做比較,利用TOF技術改善貝氏定理影像重建法的缺點,在保留影像事前機率的貢獻下,增加了TOF的時間資訊優勢,進而提升影像品質。
A Bayesian image reconstruction algorithm, One-Step-Late (OSL) algorithm which combines maximum likelihood expectation maximization (MLEM) with maximum a posteriori (MAP) estimation, was derived by Green in 1990. In Positron emission tomography (PET), image reconstruction using OSL combines the likelihood function with image prior. Use different way to reduce the effect of noise in the data with different image prior. However, image prior may over-smooth small objects and edges. Time-of-Flight PET system can provide time difference of annihilation photon pair and this TOF characteristic can improve image resolution and signal-to-noise ratio (SNR). In this study, we proposed a TOF iterative image reconstruction algorithm based on the Bayesian scheme. Using TOF technique can improve the image quality of image which reconstructed by Bayesian image reconstruction algorithm. The results of TOF-OSL and TOF-OSEM-OSL would be compared with the results of OSL and OSEM-OSL. TOF Bayesian image reconstruction algorithm can provide not only noise reduction but also can improve the image quality in PET.
[1] L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography,” IEEE Transactions on Medical Imaging, Vol. MI-1, No. 2, pp. 113-122, October 1982.
[2] E. Levitan and G. T. Herman, “A Maximum A Posteriori Probability Expectation Maximization Algorithm for Image Reconstruction in Emission Tomography, ” IEEE Transactions on Medical Imaging, Vol. MI-6, No. 3, pp. 185-192, September 1987.
[3] H. M. Hudson and R. S. Larkin, “Accelerated Image Reconstruction Using Ordered Subsets of Projection Data,” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, pp. 601-609, December 1994.
[4] T. K. Lewellen, “Time-of-Flight PET, ” Seminars in Nuclear Medicine, Vol. 28, No. 3, pp. 268-275, July 1998.
[5] W. W. Moses, “Time of Flight in PET Revisited,” IEEE Transactions on Nuclear Science, Vol. 50, No. 5, pp. 1325-1330, October 2003.
[6] C. L. Melcher and J. S. Schweitzer, “Cerium-doped Lutetium Oxyorthosilicate: A Fast, Efficient New Scintillator, ” IEEE Transactions on Nuclear Science, Vol. 39, No. 4, pp. 502-505, August 1992.
[7] D. L. Snyder, L. J. Thomas and M. M. Ter-Pogossian, “A Mathematical Model for Positron-Emission Tomography Systems Having Time-of-Flight Measurements,” IEEE Transactions on Nuclear Science, Vol. NS-28, No. 3, pp. 3575-3583, June 1981.
[8] M. Conti, B. Bendriem, M. Casey et al. “First experimental results of time-of-flight reconstruction on an LSO PET scanner,” Physics in Medicine and Biology, Vol. 50, No. 19, pp. 4507-4526, September 2005.
[9] R. M. Manjeshwar, Y. Shao and F. P. Jansen, “Image quality improvements with time-of-flight positron emission tomography for molecular imaging,” IEEE International Conference on Acoustics, Speech, and Signal Proceedings. Vol. 5, pp. v/853-v/856, 2005.
[10] P. J. Green, “Bayesian Reconstructions From Emission Tomography Data Using a Modified EM Algorithm,” IEEE Transactions on Nuclear Science, Vol. 9, No. 1, pp. 84-93, March 1990.
[11] T. J. Hebert and R. Leahy, “Statistic-Based MAP Image Reconstruction from Poisson Data Using Gibbs Priors,” IEEE Transactions on Signal Processing, Vol. 40, No. 9, pp. 2290-2303, September 1992.
[12] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 6, pp. 721-741, November 1984.
[13] J. Besag, “Towards Bayesian Image Analysis,” Journal of Applied Statistics, Vol. 16, No. 3, pp. 395-407, 1989.
[14] E. U. Mumcuogluyz, R. M. Leahy and S. R. Cherryz, “Bayesian reconstruction of PET images: methodology and performance analysis,” Phys. Med. Biol. Vol. 41, pp. 1777-1807, 1996.
[15] S. Geman and D. E. McClure, “Bayesian Image Analysis: An Application to Single Photon Emission Tomography,” in Proc. Statist. Comput. Sect. Amer. Statist. Assoc. pp. 12-18, 1985.
[16] J. Nuyts, D. Beque ́, P. Dupont and L. Mortelmans, “A Concave Prior Penalizing Relative Differences for Maximum-a-Posteriori Reconstruction in Emission Tomography, ” IEEE Transactions on Nuclear Science, Vol. 49, No. 1, pp. 56-60, February 2002.
[17] C. M. Kao, “Windowed image reconstruction for time-of-flight positron emission tomography, ” Physics in Medicine and Biology, Vol. 53, No. 13, pp. 3431-3445, June 2008.
[18] Maurizio Conti, “Effect of Randoms on Signal-to-Noise Ratio in TOF PET, ” IEEE Transactions on Nuclear Science, Vol. 53, No. 3, pp. 1188-1193, June 2006.
[19] D. L. Snyder, D. G. Politte, “Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements, ” IEEE Transactions on Nuclear Science, Vol. Ns-20, No. 3, pp. 1843-1849, June 1983.
[20] D. G. Politte, “Image Improvements in Positron-Emission Tomography Due to Measuring Differential Time-of-Flight and Using Maximum-Likelihood Estimation, ” IEEE Transactions on Nuclear Science, Vol. 37, No. 2, pp. 737-742, April 1990.
[21] M. Defrise, M. E. Casey, C. Michel and M. Conti, “Fourier rebinning of time-of-flight PET data, ” Physics in Medicine and Biology, Vol. 50, pp. 2749-2763, May 2005.
[22] M. Defrise, V. Panin, C. Michel and M. E. Casey, “Discrete axial rebinning for time-of-flight PET, ” IEEE Nuclear Science Symposium Conference Record, M10-2, pp. 2370-2374, 2006.
[23] M. E. Daube-Witherspoon, S. Surti, S. Matej, et al., “Influence of time-of-flight kernel accuracy in TOF-PET reconstruction, ” IEEE Nuclear Science Symposium Conference Record, M04-3, pp. 1723-1727, November 2006.
[24] S. Vandenberghe, M. E. Daube-Witherspoon, R. M. Lewitt et al., ”Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing, ” Physics in Medicine and Biology, Vol. 51, No. 6, pp. 1603-1621, March 2006.
[25] D. J. Kadrmas, M. E. Casey, M. Conti et al., “Impact of time-of-flight on PET tumor detection, ” The Journal of Nuclear Medicine, Vol. 50, No. 8, pp. 1315-1323, April 2009.
[26] C. Lois, B. W. Jakoby, M. J. Long et al., “An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging, ” The Journal of Nuclear Medicine, Vol. 51, No. 2, pp. 237-245, February 2010.
[27] B.W. Jakoby, Y. Bercier, M. Conti et al., “Performance Investigation of a Time-of-Flight PET/CT Scanner, ” IEEE Nuclear Science Symposium Conference Record, M06-39, pp. 3738-3743, 2008.
[28] R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array, ” Medical Physics, Vol. 12, No. 2, pp. 252-255, April 1985.
[29] J. M. Wilson, T. G. Turkington, “TOF-PET Small-Lesion Image Quality Measured Over a Range of Phantom Sizes, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 60, No. 3, pp. 1589-1595, June 2013.
[30] J. M. Wilson, T. G. Turkington, “Multisphere phantom and analysis algorithm for PET image quality assessment, ” Physics in Medicine and Biology, Vol. 53, No. 12, pp. 3267-3278, May 2008.