簡易檢索 / 詳目顯示

研究生: 林玉靜
Lin, Yu-Ching
論文名稱: 土壤及有機物質中之木糖發酵菌分離、鑑定及酒精產量分析
Screening, identification and ethanol production of xylose-fermenting yeasts from soil and organic materials
指導教授: 李清福
Lee, Ching-Fu
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2012
畢業學年度: 100
語文別: 中文
中文關鍵詞: 木糖發酵生質酒精分類鑑定酵母菌
外文關鍵詞: Xylose-fermenting, Bioethanol, Taxonomy, Identification, Yeast
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要從台灣山區土壤、腐葉及腐木等有機物質中,分離與鑑定其中具有
    木糖發酵性之酵母菌,並分析其木糖發酵酒精之產量,以評估酵母菌株於農業廢棄物之木糖發酵之應用潛力。本實驗於台灣地區中10縣市16鄉鎮山區,共採集249個土壤及有機體樣品。利用僅含木糖單一碳源之YNO (yeast nitrogen base - chloramphenicol)篩選性培養基進行木糖利用酵母菌的增殖與分離,再經YMA (yeast extract - malt extract agar) 純化,將純化過的酵母菌利用菌落巨觀、細胞微觀形態及葡萄糖發酵試驗結果,初步篩選出212株具有木糖利用及葡萄糖發酵能力酵母菌。隨後將篩選後酵母菌利用隨機擴增多型性DNA (Randomly amplified polymorphic DNA, RAPD)排除同樣品中之同種菌株,共分離出171株酵母菌。所有分離菌株均以大單元核糖體DNA(LSU ribosomal DNA) D1/D2 區域序列、傳統之形態、生理生化試驗等特徵鑑定出菌種,共鑑定出162株酵母菌經鑑定歸類為20屬70種,其中子囊菌屬者有Barnettozyma,Blastobotrys, Candida, Cyberlindnera, Debaryomyces, Hanseniaspora, Kloeckera,
    Lindnera, Meyerozyma, Millerozyma, Ogataea, Pichia, Saturnispora, Scheffersomyces,Schwanniomyces, Wickerhamomyces, Yamadazyma, Yushanniozyma, Zygoascus等19屬,而擔子菌株則僅有Cryptococcus菌屬。70個種中僅有5菌種之酒精產量為0.5 % (w/v)以上,包括Scheffersomyces stipitis, Candida sp. (125), Candida sp. (112), Candida coipomoensis, Candida solani等。另酒精產量為0.1-0.5 %者有 12個種;0.1 %以下者則有64個種。同種之菌株以及親緣關係相近菌種其酒精產量相近。
    酒精產量 0.5 % (w/v)以上之五種10 株酵母菌中,以Sch. stipitis BCRC 21775,NN6S71, Candida sp. (125) NN15S71, Candida sp. (112) NF17S80, C. coipomoensis NY1W01, C. solani NF1M81 等六株產量較高,其中Sch. stipitis BCRC 21775 與NN6S71 產量分別為2.0 %與1.888 %,Candida sp. (125) NN15S71 產量為1.561 %,Candida sp. (112) NF17S80 產量為0.619 %,C. coipomoensis NY1W01 產量為0.539%,C. solani NF1M81 產量為0.538 %。其中將Sch. stipitis BCRC 21775 和產量較高之三株Sch. stipitis NN6S71, Candida sp. (125) NN15S71, Candida sp. (112) NF17S80 於30 ℃, 100 rpm 為振盪發酵條件下,其最適發酵時間分別為第60, 40, 60, 72 小時。此外,菌株Candida sp. (125) NN15S71 其產量雖與Sch. stipitis BCRC 21775 相當,但其生長溫度可至42 ℃。因此本研究分離出菌株Candida sp. (125)具有與Sch. stipitis 相同良好發酵能力且可耐高溫,值得進一步探討與分析發酵特性以做為未來木糖發酵生質能源的菌株使用。


    The objective of this study is isolation, identification and ethanol of xylose-fermenting yeasts isolated from soil, organic materials in Taiwan. The two stages of selection strategy was applied to screen xylose-fermenting yeast strains: xylose-assimilation (XA) yeasts were enriched and selected from samples with medium YNO (yeast nitrogen base- chloramphenicol), then glucose-fermenting (GF) yeast strains were screened among the XA yeasts. Totally, two hundred and twelve yeast strains with ability of xylose - assimilation and glucose-fermention were isolated from 249 samples collected from forest area distributed in 10 counties and 16 villages in Taiwan. DNA fingerprinting profiles with primer (GTG)5 and cell morphology of the selected yeast strains were applied to eliminate the identical yeast strains in a sample, and one hundred and seventy-one isolated were recovered after the two steps. The yeast strains representing 20 genus, such as Barnettozyma, Blastobotrys, Candida, Cyberlindnera, Debaryomyces, Hanseniaspora, Kloeckera, Lindnera, Meyerozyma, Millerozyma, Ogataea, Pichia, Saturnispora, Scheffersomyces, Schwanniomyces, Wickerhamomyces, Yamadazyma, Yushanniozyma, Zygoascus and Cryptococcus and 70 species were identified based on traditional and molecular approaches including cell and spore morphology, physiology and LSU (large subunit) D1 ⁄ D2 and ITS (Internal transcribed spacers) fragments of ribosomal DNA. The ethanol productivity from 5% D-xylose of all these selected strains were detected. Among the strains of sixty-four species of 70 species, their ethanol productivity were less than 0.1 % (w/v), strains of 12 species ramged from 0.1-0.5 % (w/v), while 10 strains representing 5 species, such as Scheffersomyces stipitis, Candida sp. (125), Candida sp. (112), Candida coipomoensis, Candida solani produced greater than 0.5 % (w/v) of ethanol productivity. The ethanol productivity of the top five strains Scheffersomyces stipitis BCRC 21775, NN6S71, Candida sp. (125) NN15S71, Candida sp. (112) NF17S80, Candida coipomoensis NY1W01, Candida solani NF1M81, were detected after culture at 30 ℃ for 48 hours with continuous shaking 100 rpm in 50 ml medium containing 5 % xylose under microaerobic conditions, their ethanol productivity were 2.0, 1.888, 1.561, 0.619, 0.539 and 0.538 % (w/v), resepectively. The optimum fermentation time of Sch. stipitis BCRC 21775 and NN6S71, C. sp. (125) NN15S71, C. sp. (112) NF17S80 is 60 hours, 40 hours, 60 hours, 72 hours resepectively. Furthermore, Sch. stipitis BCRC 21775 and C. sp. (125) NN15S71 have similar ethanol production,but C. sp. (125) NN15S71 can grow at 42 ℃. According to the results described above, C. sp. (125) NN15S71 with high ethanol productivity from xylose revealed favorable characteristics for xylose fermentation, such as high growth temperature, which could be as a good potential for xylose-fermenting in industry.

    中文摘要 Ⅰ 英文摘要 Ⅲ 目錄 Ⅴ 壹、前言 1 一、生質能源重要性 1 二、生質酒精原料與製備. 1 三、木糖發酵酵母菌菌種介紹 3 四、木糖發酵酒精之代謝程序 4 五、木醣發酵條件研究 7 (一)通氣量 7 (二)抑制物 7 (三)培養基成分 8 (四)pH 值 8 (五)溫度 9 六、木糖發酵酒精之菌種改良 9 七、研究目的 10 貳、材料與方法 11 一、藥品與培養基 11 (一)化學藥品 11 (二)培養基藥品 11 二、器材 12 三、儀器 12 四、研究方法 13 (一)樣品採樣 13 (二)菌種增殖分離與純化 13 (三)菌種篩選 13 (四)菌種保存 23 (五)酵母菌分子鑑定法 23 (六)酵母菌傳統鑑定方法 24 (七)親緣關係分析 28 (八)木糖發酵試驗 28 參、結果 32 一、樣品分佈 32 二、菌種分離與篩選 32 (一)菌種初步及發酵特性篩選 32 (二)隨機擴增多型性DNA(RAPD)分子鑑定法 32 (三)木糖發酵特性篩選 32 三、傳統菌種鑑定 40 (一)細胞形態 40 (二)菌絲生長試驗 40 (三)產孢試驗 40 (四)菌落形態 41 (五)生理生化試驗 41 四、分子鑑定 49 (一)已確立種名 49 (二)已確立屬名但未命名之酵母菌種 49 (三)未被紀錄之酵母菌種 50 五、親緣關係分析 50 六、木糖發酵分析 58 (一)酒精分析檢量線 58 (二)酒精發酵通氣量探討 58 (三)酵母菌之酒精產量 65 (四)酵母菌酒精生產生長曲線 65 肆、討論 75 一、木糖發酵菌株篩選方式 75 二、木糖發酵菌樣品來源比較 75 三、菌種酒精產量分析 76 伍、結論 79 陸、參考文獻 80

    姚政旭。2009。分子生物技術在酵母菌鑑定上的應用。國立新竹教育大學應用科學系碩士班碩士學位論文。
    黃莉媖。2010。臺灣菇類子實體棲居酵母菌的鑑定與分類研究。國立新竹教育大學應用科學系研究所碩士論文。
    劉純豪。2007。台灣北部地區土壤中酵母菌的多樣性及分類研究。元培科技大學生物技術研究所碩士論文。
    謝智雯。2009。台灣南部地區土壤酵母菌種類分部與調查。國立新竹教育大學應用科學系研究所碩士論文。
    賴惠瑜。2009。以Pichia stipitis 進行玉米桿水解液之酒精醱酵。國立高雄應用科技大學化學工程與材料工程系研究所碩士論文。
    Alexander MA, Yang VW, Jeffries TW. 1988b.Levels of Pentose Phosphate Pathway Enzymes from Candida shehatae Grown in Continuous Culture. Applied Microbiology and Biotechnology.29:82-288.
    Agbogbo FK, Wenger KS. 2007.Production of ethanol from corn stover hemicellulose hydrolyzate using P. stipitis. Journal of Industrial Microbiology and Biotechnology.34: 723-727.
    Agbogbo FK, Coward-Kelly G. 2008.Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters.30:1515-1524.
    Axe DD, Bailey JE. 1995.Transport of Lactate and Acetate through the Energized Cytoplasmic Membrane of Escherichia-Coli. Biotechnology and Bioengineering.47:8-19.
    Balat M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management.52:858–875.
    Baleiras CM, Eijsma MB, Hofstra H, Huis in't Veld JH, van der Vossen JM. 1996.Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Applied and Environmental Microbiology.62:41-46.
    Bajwa PK, Shireen T, D'Aoust F, Pinel D, Martin VJ, Trevors JT, Lee H. 2009.Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng.104:892-900.
    Bajwa PK, Pinel D, Martin VJJ, Trevors JT, Lee H. 2010.Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. Microbiological
    Methods.81:179-186.
    Barbosa MFS, Lee H, Collins-Thomson DL. 1990.Additive effects of alcohols, their acidic by-products, and temperature on the yeast Pachysolen tannophilus. Applied
    and Environmental Microbiology.56:545-550.
    Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF. 2008.Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnology for Biofuels.1:1-8.
    Bicho PA, Runnals PL, Cunningham JD, Lee H. 1988.Induction of xylosereductase and xylitol dehydrogenase activities in Pachysolen tannophilus. Applied and Environmental Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Microbiology.54:50-54.
    Ravindra P. 2010.Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnology and Molecular Biology.6:8-20.
    Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P. 2011.Bioconversion of pentose sugars into ethanol: A review and future directions. Biotechnology and Molecular Biology.6:8-20.
    Chang CF, Yao CH, Young SS, Limtong S, Kaewwichian R, Srisuk N, Lee CF. 2011.Candida gosingica sp. nov., an anamorphic ascomycetous yeast closely related to Scheffersomyces spartinae. International Journal of Systematic and Evolutionary Microbiology.61:690-694.
    Chang CF, Liu YR, Chen SF, Naumov GI, Naumova ES, Lee CF. 2012.Five novel species of the anamorphic genus Candida in the Cyberlindnera clade isolated from natural substrates in Taiwan. Antonie van Leeuwenhoek Journal of General and
    Molecular Microbiology.(Accepted)
    Chu BC, Lee H. 2007.Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances.25:425-441.
    Dmytruk O, Dmytruk K, Abbas C, Voronovsky A, Sibirny A. 2008.Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula
    polymorpha. Microbial Cell Factories.7:1-8.
    du Preez JC, Bosch M, Prior BA. 1986.Xylose fermentation by Candida shehatae and Pichia stipitis - Effects of pH, temperature and substrate concentration. Enzyme and
    Microbial Technology.8:360-364.
    du Preez JC, Van Driessel B, Prior BA. 1988.The relation between redox potential and D-xylose fermentation by Candida shehatae and Pichia stipitis. Biotechnology
    Letters.10:901-906.
    du Preez JC, Van Driessel B, Prior BA. 1989.Effect of aerobiosis on fermentation and key enzyme levels during growth of Pichia stipitis, Candida shehatae and Candida
    tenuis on D-xylose. Archives of Microbiology.52:143-147.
    Galbe M, Zacchi G. 2002.A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology.59:618-628.
    Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R. 2010.Hemicelluloses for fuel ethanol: A review. Bioresource Technology.101:4775-4800.
    Grootjen DRJ, van der Lans RGJM, Luyben KChAM. 1990.Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme and Microbial Technology.12:20-23.
    Guo GL, Chen WH, Chen WH, Men LC, Hwang WS. 2008.Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresource Technology.99:6046-6053.
    Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. 2007.Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology.74:937-953.
    Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund M F. 2007.Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Advances in Biochemical Engineering/Biotechnology.108:147-177.
    Huang CF, Lin TH, Guo GL, Hwang WS. 2009.Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology.100:3914-3920.
    Jeffries TW. 1983.Utilization of Xylose by Bacteria Yeasts and Fungi. Advances in Biochemical Engineering/Biotechnology.27:1-32.
    Jeffries TW. 1985a.Emerging Technology for Fermenting D-xylose. Trends in Biotechnology.3:208-212.
    Jeffiies TW. 1985b.Effects of Culture Conditions on the Fermentation of Xylose to Ethanol by Candida shehatae. Biotechnology Bioengineering Symposium.15:149-166.
    Jeffries TW, Kurtzman CP. 1994.Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme and Microbial Technology.16:922-932.
    Jeffries TW, Jin YS. 2000.Ethanol and Thermotolerance in the Bioconversion of Xylose by Yeasts. Advances in Applied Microbiology.47:221-268.
    Jeffries TW, Jin YS. 2004.Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology.63:495-509.
    Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF.
    2007.Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories.6:1-10.
    Kilonzo PM, Margaritis A, Bergougnou MA. 2008.Effect of Medium Composition on Glucoamylase Production During Batch Fermentation of Recombinant Saccharomyces cerevisiae. Journal of the Institute of Brewing.114:83-96.
    Kurtzman CP, Robnett CJ. 1998.Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek.73:331-371.
    Kurtzman CP, Fell JW. 2004.In: Mueller, G. M., G. F. Bills, and M. S. Foster. editors. Biodiversity of fungi: Inventory and monitoring methods. 337-341.
    Lachke A. 2002. Biofuel from D-xylose the second most abundant sugar. Resource.50:50-58.
    Laplace JM, Delgenes JP, Moletta R, Navarro JM. 1991.Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae
    and Zymomonas mobilis: oxygen requirement as a key factor. Applied Microbiology and Biotechnology.36:158-162.
    Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. 1999.The generation of fermentation inhibitors during Dilute acid Hydrolysis of softwood. Enzyme and Microbial Technology.24:151-159.
    Lee TY, Kim MD, Kim KY, Park K, Ryu YW, Seo JH. 2000.A parametric study on ethanol production from xylose by Pichia stipitis. Biotechnology and Bioprocess Engineering.5:27-31.
    Lee CF, Liu CH, Young SS, Chang KS. 2008.Kazachstania jiainicus sp. nov., an ascomycetous yeast spec ies isolated from soil in Taiwan. Federation of European Microbiological Societies Yeast Research.8:114-118.
    Lee CF, Yao CH, Liu YR, Young SS, Chang KS. 2009.Kazachstania wufongensis sp. nov., an ascosporogenous yeast isolated from soil in Taiwan. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology.
    95:335-341.
    Liu CH, Young SS, Chang TC, Lee CF. 2008.C. dajiaensis sp. nov., C. yuanshanicus sp. nov., C. jianshihensis sp. nov., and C. sanyiensis sp. nov., four anamorphic, ascomycetous yeast species isolated from soil in Taiwan Federation of European Microbiological Societies Yeast Research.8: 815-822.
    Liu HS, Chou CM, Lee YC. 2002.The effect of KLa on the ethanol yield for xylose fermentation. Journal of the Chinese Institute of Chemical Engineers.33:161-166.
    Liu YR, Liu CH, Young SS, Lee CF. 2008. New records of Debaryomyces nepale nsis in Taiwan. Fungal Science.23:11-16.
    Lohmeier-Vogel EM, Sopher CR, Lee H. 1998.Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. Journal of Industrial Microbiology and Biotechnology.20:75-81.
    Lopandic K, Molnár O, Prillinger H. 2005.Application of ITS sequence analysis, RAPD and AFLP fingerprinting in characterising the yeast genus Fellomyces. Microbiological Research.160:13-26.
    Maleszka R, Schneider H. 1982.Fermentation of D-xylose, xylitol, and D-xylulose by yeasts. Canadian Journal of Microbiology.28:360-363.
    Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. 2009.Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Biomass Technology.100:2392-2398.
    McMillan JD. 1993.Xylose Fermentation to Ethanol: A Review. National Renewable Energy Laboratory.1-38.
    Messner R, Prillinger H, Altmann F, Lopandic K, Wimmer K, Molnár O, Weigang F. 1994.Molecular Characterization and Application of Random Amplified Polymorphic DNA Analysis of Mrakia and Sterigmatomyces Species. International Journal of Systematic Bacteriology.44:694-703.
    Mojović L, Pejin D, Grujić O, Markov S, Pejin J, Rakin M, Vukašinović M, Nikolić S,Savić D. 2009.Progress in the production of bioethanol on starch-based feedstocks. Chemical Industry and Chemical Engineering Quarterly.15:211-226.
    Mustafa B. 2011.Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management.52:858-875.
    Nakase T, Jindamorakot S, Tanka K, Ninomiya S, Kawasaki H, Limtong S, Lee CF. 2010. Vanderwaltozyma tropicalis sp. nov., a novel ascomycetous yeast species found in Thailand. Journal of General and Applied Microbiology.56:31-36.
    Nigam JN, Ireland RS, Margaritis A, Lachance MA. 1985a.Isolation and screening of yeasts that ferment d-xylose directly to ethanol. Applied and Environmental
    Microbiology.50:1486-1489.
    Nigam JN, Margaritis A, Lachance MA. 1985b.Aerobic fermentation of D-Xylose to ethanol by Clavispora sp. Applied and Environmental Microbiology.50:736-766.
    Nigam JN. 2001a.Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. Journal of Applied Microbiology.90:208-215.
    Nigam JN. 2001b.Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. Journal of Industrial Microbiology and Biotechnology.26:145-150.
    Paffetti D, Barberio C, Casalone E, Cavalieri D, Fani R, Fia G, Mori E, Polsinelli M. 1995.DNA fingerprinting by random amplified polymorphic DNA and restriction
    fragment length polymorphism is useful for yeast typing. Research in Microbiology.146:587-594.
    Panchal CJ, Bast L, Russell I, Stewart GG. 1988.Repression of xylose utilization,by glucose in xylose-fermenting yeasts. Canadian Journal of Microbiology.34:1316-1320.
    Parekh SR, Wayman M. 1986.Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnology Letters.8:597-600.
    Parekh SR, Yu S, Waymann M. 1986.Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysates for increased ethanol production. Applied Microbiology
    and Biotechnology. 25:300-304.
    Péter G, Tornai-Lehoczki J, Shin KS, Dlauchy D. 2007. Ogataea thermophila sp.nov., the teleomorph of Candida thermophila. Federation of European Microbiological
    Societies Yeast Research.7:494-496.
    Poon R, Yagminas A, Singh A; Valli VE, Chu I. 2001.Short-term oral toxicity of gasohol in female rats. Toxicology.21:461-467.
    Rao RS, Bhadra B, Shivaji S. 2008.Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Letters in Applied Microbiology.47:19-24.
    Ronald H, Maas W, Springer J, Eggink G, Weusthuis RA. 2008.Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L(+)-lactic acid
    production. Journal of Industrial Microbiology and Biotechnology.35:569-578.
    Saddler JN. 1993.Bioconversion of Forest and Agricultural Plant Residues. C.A.B.International, Wallingford.
    Schneider H, Wang PY, Chan YK, Maleszka R. 1981.Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnology Letters.3:89-92.
    Schneider H. 1989.Conversion of pentoses to ethanol by yeasts and fungi. Critical Reviews in Biotechnology.9:1-40.
    Schneider H. 1996.Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast. Enzyme and Microbial Technology.19:94-98.
    Skoog K, Hahn-Hagerdal B. 1990.Effect of oxygenation on xylose fermentation by Pichia stipitis. Applied and Environmental Microbiology.56:3389-3394.
    Slininger PJ, Bothast RJ, van Cauwenberge JE, Kurtzman CP. 1982.Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnology and Bioengineering.24:371-384.
    Slininger PJ, Bothast RJ, Okos MR, Ladisch MR. 1985.Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnology Letters.7:431-436.
    Sreenath HK, Jeffries TW. 2000.Production of ethanol from wood hydrolyzate by yeasts. Bioresource Technology.72:253-260.
    Srinorakutara T, Chumkhunthod P, Suttikul S, Yindeeyoungyeon W,Wattanasiritham L, Mouthung B, Wangpila M. 2008.Strain improvement of ethanol fermenting yeast
    using random mutagenesis technique. Thailand Journal of Biotechnology.8:120-123.
    Suh SO, Marshall CJ, Mchugh JV, Blackwell M. 2003.Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Molecular Ecology.12:3137-3145.
    Taherzadeh MJ. 1999. Ethanol from lignocellulose: physiological effects of inhibitors and fermentation strategies. Ph.D. thesis. Chalmers Univ, Göteborg, Sweden.
    Taherzadeh MJ, Karimi K. 2007.Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources.2:472-499.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997.The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research.25: 4876-4882.
    Tran AV, Chambers RP. 1986.Ethanol fermentation of red oak acid prehydrolysate by the yeast Pichia stipitis CBS 5776. Enzyme and Microbial Technology.8:439-444.
    Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffers WA. 1984.Alcoholic Fermentation of D-Xylose by Yeasts. Applied and Environmental Microbiology.47:1221-1223.
    van der Walt JP, Ferreira NP, Steyn RL. 1987.Candida lyxosophila sp. nov., a new D-xylose fermenting yeast from southern Africa. Antonie Van Leeuwenhoek.53:93-97.
    van Hoek P, van Dijken JP, Pronk JT. 1998.Effect of specific growth rate on fermentative capacity of baker’s yeast. Applied and Environmental Microbiology.64:4226-4223.
    van Zyl C, Prior BA, du Preez JC. 1988.Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Applied Biochemistry and Biotechnology.17:357-369.
    van Zyl C, Prior BA, du Preez JC. 1991.Acetic acid inhibition of D-xylose fermentation by Pichia stipitis. Enzyme and Microbial Technology.13:82-86.
    Vandijken JP, Verduyn C, Postma E, Weusthuis R, Vanurk H, Visser W,Scheffers WA. 1990.Regulation of Metabolic Fluxes in the Utilization of Sugars by Yeasts. 5th European Congress on Biotechnology.2:1079-1082.
    Veduyn C, van Kleef R, Frank J, Schreuder H, van Dijken JP, Scheffers WA. 1985.Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemistry Journal.226:669-677.
    Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA. 2009.Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation
    of starch and xylan. Metabolic Engineering.11:234-242.
    Walczak E, Czaplińska A, Barszczewski W, Wilgosz M, Wojtatowicz M, Robaka M. 2007.RAPD with microsatellite as a tool for differentiation of Candida genus yeasts
    isolated in brewing. Food Microbiology.24:305-312.
    Walt JP, Ferreira NP,Steyn RL. 1987. Candida lyxosophila sp. nov., a new D-xylose fermenting yeast from Southern Africa. Antonie van Leeuwenhoek.53:93-97.
    Wang P, Brenchley JE, Humphrey AE. 1994.Screening micro-organism and utilization of furfural, and possible intermediatesin its degradative pathway. Biotechnology
    Letters.16:977-982.
    Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T.2011.A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection
    of a spontaneous mutant with increased ethanol tolerance. Bioresource Technology.102:1844-1848.
    Welsh J, McClelland M. 1990.Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research.18:7213-7218.
    Wheals AE, Basso LC, Alves DMG, Amorim HV. 1999.Fuel ethanol after 25 years. Trends in Biotechnology.17:482-487.
    White TJ, Bruns T, Lee S, Taylor J. 1990.Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics, PCR protocols: a guide for methods and applications,(Innis MA, Gelfand DH, Sninsky JJ, White TJ eds),315-322.
    Academic Press, New York. Williams JGK., Kubelik AR, Livak KJ, Rafalski JA., Tingey SV. 1990.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research.22:6531-6535.
    Wilson JJ, Deschatelets L, Nishikawa NK. 1989.Comparative fermentability of enzymatic and acid hydrolyzatcs of steam-pretreated aspen wood hemicellulose by Pichia stipitis CBS 5776. Applied Microbiology and Biotechnology.31:592-595.
    Wong KK, Tan UL, Saddler JN. 1988.Mutiplicity of beta-1,4-xylanase in microorganisms: function and applications.Microbialogy Reviews.52:305-317.
    Wyman CE. 2003. Potential Synergies and Challenges in Refining Cellulosic Biomass to Fuels, Chemicals, and Power. Biotechnology Progress.19:254-262.
    Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI. 2003.Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts. Applied Biochemistry and Biotechnology.39:265-269.
    Zaldivar J, Martinez A, Ingram LO. 2000.Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering.68:524-530.
    Zanone JP, Peres MFS, Gattas EAL.2007. Colorimetric assay of ethanol using alcohol dehydrogenase from dry baker’s yeast. Enzyme and Microbial Technology.40:466-470.
    Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. 1995.Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science.267:240-243.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE