研究生: |
秦拉維 Ravikumar, Chinnarasu |
---|---|
論文名稱: |
在冷原子中利用量子干涉對時間能量糾纏的窄頻雙光子進行同調控制 Coherent Control of Narrowband Time-Energy Entangled photons by Quantum interference in Cold Atomic Ensembles |
指導教授: |
褚志崧
Chuu, Chih-Sung |
口試委員: |
廖文德
Liao, Wen-Te 籔下篤史 Atsushi, Yabushita 王立邦 Wang, Li-Bang 余怡德 Yu, Ite A 劉怡維 Liu, Yi-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 151 |
中文關鍵詞: | 量子光學 、糾纏光子 、冷原子 、量子干涉 、量子中繼器 、量子中繼器 |
外文關鍵詞: | Quantum Optics, Entangled photons, Cold atoms, Quantum Interference, Quantum repeaters, Quantum memory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
窄頻糾纏的光子不論在基礎研究或是應用方面都十分有趣。本論文對於冷原子團中利用自發四波混頻產生的時間能量糾纏的光子(雙光子)的產生以及操作提供了詳細的研究。其中,我們在低光學深度的系統中,利用控制失諧的自發四波混頻中的量子干涉高效率的產生雙光子。利用這種方法,產生的雙光子會有小於(光頻率為原子躍遷頻時的)自然線寬的859 kHz線寬。此外,我們也展示了雙光子波包的電光振幅調變。這項實驗成果為原子晶片系統和以量子中繼器實現的量子通訊提供了一個產生次自然線寬的微型化雙光子光源之可行方法。在本論文中,我們也提出了利用五能階原子系統將窄頻雙光子源結合開關功能的方法。我們在實驗上展示了雙光子的開關,也為其中的物理機制提供了理論計算。此雙光子開關不但能應用於雙光子波包的波形操控,並且基於基礎研究的興趣,也提供了產生相關聯的光學前驅的方法。我們也討論了如何利用失諧的開關場來實現量子相位閘門的可能性。
Narrowband entangled photons provide intriguing features for both fundamental and application perspectives. This thesis gives detailed studies about the generation and manipulation of the time-energy entangled photons(biphotons) generated using the cold atomic medium by Spontaneous-Four-Wave-Mixing (SFWM) process. In particular, we have proposed and demonstrated an efficient way to generate biphotons by controlling the quantum interference existing in the detuned SFWM process in low Optical-Depth (OD) ensembles. Generated biphotons have a sub-natural(on-resonant) line-width of 859 kHz. The electro-optic modulation of these biphotons is also demonstrated. Our method opens opportunities for miniaturizing the atomic sources to generate sub-natural line-width biphotons also for quantum repeater based quantum communications as well. We also propose a narrowband biphoton source integrated with a switching function by considering a five-level atomic system. We have developed a theoretical formalism for this physical process, and experimentally demonstrated the biphoton switching. This method may provide opportunities to manipulating the biphotons by photon switching, thus paving a way to generate correlated optical-precursors for fundamental interest. The realization of quantum phase gates for the case of the non-resonant switching field is also discussed.
[1] Marlan O. Scully, M. Suhail Zubairy, Quantum Optics (Cambridge Uni-
versity Press 2012)
[2] C.J Foot, Atomic Physics, (Oxford University Press 2005).
[3] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev.
Lett. 7, 118( 1961).
[4] S. H. Autler and C. H. Townes,Phys. Rev. 100, 703(1955).
[5] Carl A. Kocher and Eugene D. Commins Phys. Rev. Lett. 18, 575(1967).
[6] Stuart J. Freedman and John F. Clauser.,Phys. Rev. Lett. 28, 938(1972).
[7] John F. Clauser., Phys. Rev. Lett. 36, 1223(1976).
[8] Alain Aspect, Philippe Grangier, and G´erard Roger., Phys. Rev. Lett.
47, 460 (1981).
[9] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan., Phys.
Rev. 127,1918 (1962)
[10] David C. Burnham and Donald L. Weinberg., Phys. Rev. Lett. 25,84
(1970).
[11] S. E. Harris and R. B. Miles., Appl. Phys. Lett. 19, 385 (1971).
[12] S. E. Harris., Phys. Rev. Lett. 62, 1033 (1989); A. Imamoglu and S. E.
Harris, Opt. Lett. 14, 1344 ( 1989).[13] Sanchao Zhang, Ph.d thesis, Coherent Quantum Interaction between
Photons and Atoms, submitted to HKUST, Hong Kong.
[14] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413
(2001).
[15] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
[16] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64,
1107(1990).
[17] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod.
Phys. 83, 33 (2011).
[18] Shanchao Zhang, J. F. Chen, Chang Liu, Shuyu Zhou, M. M. T. Loy, G.
K. L. Wong, and Shengwang Du, Rev. Sci. Instrum. 83, 073102 (2012).
[19] V. Bali´c, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Phys.
Rev. Lett. 94, 183601 (2005).
[20] S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, Phys.
Rev. Lett. 100, 183603 (2008).
[21] P. Kolchin, C. Belthangady, S. Du, G. Y. Yin, and S. E. Harris, Phys.
Rev. Lett. 101, 103601 (2008).
[22] C. Belthangady, C.-S. Chuu, I. A. Yu, G. Y. Yin, J. M. Kahn, and S.
E. Harris, Phys. Rev. Lett. 104, 223601 (2010).
[23] C.-S. Chuu and S. E. Harris, Phys. Rev. A 83, 061803(R) (2011).
[24] Jianming Wen, Shengwang Du, and Morton H. Rubin., Phys. Rev. A
76, 013825 (2007).
[25] Hui Yan, Shanchao Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong,
and Shengwang Du., Phys. Rev. Lett. 106, 033601 (2011).
[26] Kaiyu Liao, Hui Yan, Junyu He, Shengwang Du, Zhi-Ming Zhang, and
Shi-Liang Zhu.,Phys. Rev. Lett. 112, 243602(2014).
[27] Hardman, K. S., Bennetts, S., Debs, J. E., Kuhn, C. C. N., McDonald,
G. D., Robins, N. Construction and Characterization of External Cavity
Diode Lasers for Atomic Physics. J. Vis. Exp. 86, e51184,(2014).
[28] Engineering the atom-photon Interaction (Springer International Pub-
lishing 2015), A. Predojevi´c and M. W. Mitchell (Eds.).
[29] H.-J. Briegel, W. D¨ur, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81,
5932 (1998).
[30] D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005).
[31] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490
(2001).
[32] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D.
Lukin, Phys. Rev. Lett. 86, 783 (2001).
[33] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M.
Duan, and H. J. Kimble, Nature 423, 731 (2003).
[34] D. N. Matsukevich, T. Chaneli`ere, S. D. Jenkins, S.-Y. Lan, T. A. B.
Kennedy, and A. Kuzmich, Phys. Rev. Lett. 97, 013601 (2006).
[35] S. Chen, Y.-A. Chen, T. Strassel, Z.-S. Yuan, B. Zhao, J. Schmiedmayer,
and J.-W. Pan, Phys. Rev. Lett. 97, 173004 (2006).
[36] C.-S. Chuu, T. Strassel, B. Zhao, M. Koch, Y.-A. Chen, S. Chen, Z.-S.
Yuan, J. Schmiedmayer, and J.-W. Pan, Phys. Rev. Lett. 101, 120501
(2008).
[37] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich,
T. A. B. Kennedy, and A. Kuzmich, Nat. Phys. 5, 10 (2009).
[38] B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M. Jin, J.
Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, Nat. Phys. 5, 95
(2009).
[39] Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and
I. A. Yu, Phys. Rev. Lett. 110, 083601 (2013).
[40] Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee,
Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, Phys. Rev. Lett.
120, 183602 (2018).
[41] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and
S.-L. Zhu, Nat. Photon. 13, 346 (2019).
[42] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Phys. Rev. Lett.
78, 3221 (1997).
[43] A. V. Gorshkov, A. Andr´e, M. Fleischhauer, A. S. Sørensen, and M. D.
Lukin, Phys. Rev. Lett. 98, 123601 (2007).
[44] S. Zhang, C. Liu, S. Zhou, C.-S. Chuu, M. M. T. Loy, and S. Du, Phys.
Rev. Lett. 109, 263601 (2012).
[45] C. Liu, Y. Sun, L. Zhao, S. Zhang, M. M. T. Loy, and S. Du, Phys. Rev.
Lett. 113, 133601 (2014).
[46] S.-W. Feng, C.-Y. Cheng, C.-Y. Wei, J.-H. Yang, Y.-R. Chen, Y.-W.
Chuang, Y.-H. Fan, and C.-S. Chuu, Phys. Rev. Lett. 119, 143601
(2017).
[47] C. Belthangady, S. Du, C.-S. Chuu, G.-Y. Yin, and S. E. Harris, Phys.
Rev. A 80, 031803(R) (2009).
[48] C.-H. Wu, C.-K. Liu, Y.-C. Chen, and C.-S. Chuu, Phys. Rev. Lett.
123, 143601 (2019).
[49] H. P. Specht, J. Bochmann, M. M¨ucke, B. Weber, E. Figueroa, D. L.
Moehring, and G. Rempe, Nat. Photon. 3, 469 (2009).
[50] B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich,
and C. Kurtsiefer, Phys. Rev. Lett. 111, 123602 (2013).
[51] L. Zhao, X. Guo, C. Liu, Y. Sun, M. M. T. Loy, and S. Du, Optica 1,
84 (2014).
[52] C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and
S. Du, Nat. Commun. 7, 12783 (2016).
[53] X. Guo, Y. Mei, and S. Du, Optica 4, 388 (2017).
[54] C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett.
97, 223601 (2006).
[55] X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W.
Pan, Phys. Rev. Lett. 101, 190501 (2008).
[56] M. Scholz, L. Koch, and O. Benson, Phys. Rev. Lett. 102, 063603 (2009).
[57] F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cer`e, and M.
W. Mitchell, Phys. Rev. Lett. 106, 053602 (2011).
[58] M. Rambacha, A. Nikolova, T. J. Weinhold, and A. G. White, APL
Photon. 1, 096101 (2016).
[59] C.-H. Wu, T.-Y. Wu, Y.-C. Yeh, P.-H. Liu, C.-H. Chang, C.-K. Liu, T.
Cheng, and C.-S. Chuu, Phys. Rev. A 96, 023811 (2017).
[60] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901
(2002).
[61] H. P. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Nature
431, 1075 (2004).
[62] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich,
and H. J. Kimble, Science 303, 1992 (2004).
[63] J. K. Thompson, J. Simon, H. Loh, and V. Vuleti´c, Science 313, 74
(2006).
[64] P. Farrera, G. Heinze, B. Albrecht, M. Ho, M. Ch´avez, C. Teo, N. San-
gouard, H. de Riedmatten, Nat. Comm. 7, 13556 (2016).
[65] J. Fort´agh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007).
[66] Atom Chips (Wiley 2011), J. Reichel and V. Vuletic (Eds.).
[67] J. Wen, S. Du, and M. H. Rubin, Phys. Rev. A 76, 013825 (2007).
[68] S. Du, J. Wen, and M. H. Rubin, J. Opt. Soc. Am. B 25, C98 (2008).
[69] J. F. Clauser, Phys. Rev. D 9, 853 (1974).
[70] M. Namazi, C. Kupchak, B. Jordaan, R. Shahrokhshahi, and E.
Figueroa, Phys. Rev. Appl. 8, 034023 (2017).
[71] D. A. Braje, V. Bali´c, S. Goda, G. Y. Yin, and S. E. Harris, Phys. Rev.
Lett. 93, 183601 (2004).
[72] Luwei Zhao, Yumian Su, and Shengwang Du, Phys. Rev. A 93, 033815
(2016).
[73] H. Schmidt and A. Imamoglu., Opt. Lett,21,1936 (1996).
[74] Julien Laurat, Hugues de Riedmatten, Daniel Felinto, Chin-Wen Chou,
Erik W. Schomburg, and H. Jeff Kimble, Opt. Express 14, 6912-6918
(2006)
[75] Harris, S. E., Yamamoto, Y. Phys. Rev. Lett. 81, 3611-3614 (1998).
[76] Harris, S. E., Hau, L. V. Phys. Rev. Lett. 82, 4611-4614 (1999).
[77] Fleischhauer M., Imamoglu. A, Marangos J., Rev. Mod. Phys. 77,
633–673 (2005).
[78] L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
[79] J. F. Chen, Heejeong Jeong, M. M. T. Loy, and Shengwang Du, Optical
Precursors: From Classical Waves to Single Photons, Springer Briefs in
Physics, Springer (2013).
[80] Shengwang Du, Chinmay Belthangady, Pavel Kolchin, G. Y. Yin, and
S. E. Harris, Opt. Lett. 33, 2149 (2008).
[81] J. Aaviksoo, J. Kuhl, and K. Ploog Phys. Rev. A 44, R5353(R) (1991).
[82] M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai,
and M. Kuwata-Gonokami Phys. Rev. B 66, 033302 (2002).
[83] S.-H. Choi and U. L.
¨
Osterberg, Phys. Rev. Lett. 92, 193903 (2004).
[84] Ursula J. Gibson and Ulf L. ¨osterberg, Opt. Express 13, 2105-2110
(2005).
[85] Dong Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and Shengwang
Du, Phys. Rev. Lett. 103, 093602 (2009).
[86] J. F. Chen, Shuyuan Wang, Dong Wei, M. M. T. Loy, G. K. L. Wong,
and Shengwang Du, Phys. Rev. A 81, 033844 (2010).
[87] Heejeong Jeong and Shengwang Du, Phys. Rev. A 79, 011802(R) (2009).
[88] Dong-Sheng Ding, Yun Kun Jiang, Wei Zhang, Zhi-Yuan Zhou, Bao-Sen
Shi, Guang-Can Guo, Phys. Rev. Lett. 114, 093601 (2015).
[89] Shanchao Zhang, J. F. Chen, Chang Liu, M. M. T. Loy, G. K. L. Wong,
and Shengwang Du, Phys. Rev. Lett. 106, 243602 (2011).
[90] Shengwang Du, Jianming Wen, and Morton H. Rubin., J. Opt. Soc. Am.
B 25, C98-C108 (2008).
[91] Ravikumar Chinnarasu, Chi-Yang Liu, Yi-Feng Ding, Chuan-Yi Lee,
Tsung-Hua Hsieh, Ite A Yu, Chih-Sung Chuu., Phys. Rev. A 76, 013825
(2020).
[92] P Kolchin., Physical Review A 75,033814 (2007).