簡易檢索 / 詳目顯示

研究生: 林旻翰
Lin, Min-Han
論文名稱: 利用熱脫附氣相層析質譜儀及表面聲波氣體感測器分辨紅酒
Utilizing TD-GC-MS System and Gas Sensor Array Based on Surface Acoustic Wave for Red Wines Discrimination
指導教授: 饒達仁
Yao, Da-Jeng
口試委員: 楊家銘
Yang, Chia-Min
鍾添淦
Chung, Tien-Kan
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 紅酒分辨表面聲波陣列氣體感測器熱脫附氣相層析質譜儀高分子
外文關鍵詞: red wine discrimination, SAW sensor array, TD-GC-MS, polymers
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先利用熱脫附儀氣相層析質譜儀(TD-GC-MS)聯用系統,針對不同品種的紅酒進行氣味分析,證明透過TD-GC-MS系統可以成功分析不同品種間的差異,並找出關鍵有機氣體分子(VOCs)後,利用表面聲波(surface acoustic wave,SAW)原理發展出高靈敏度的電子鼻感測系統,使用128°YX-LiNbO3壓電材料與黃光微影製程完成感測晶片,接著搭配共振電路激發出中心頻率113~114MHz表面聲波,並懸塗高分子於感測區上並吸附關鍵有機氣體分子,藉由質量改變造成表面聲波波速變化,觀察頻率飄移下降量分析定性及定量之結果,目標發展出手持式感測裝置判定紅酒的品種以防不實的紅酒品種標榜。
    本研究針對了三種品種(Cabernet sauvignon、Merlot、黑后)進行實驗,分別採購了法國藍仙姑梅洛醇釀紅葡萄酒(100% Merlot)、法國藍仙姑蘇維翁醇釀紅葡萄酒(100% Cabernet sauvignon)、藍輝酒莊國王(100% 黑后)以及涉及假酒風波的大道(Cabernet sauvignon)紅酒,透過TD-GC-MS系統證實在於黑后品種可能會散發獨特有機氣體分子: Acetic acid, methyl ester、2-Pentanone、Disulfide, dimethyl、Acetic acid, 2-methylpropyl ester以及2-Pentanol;梅洛品種可能會有獨特有機氣體分子: 2,3-Butanedione。最後利用電子鼻系統探討不同酒之頻率差異,結果發現使用PVB可以分辨出梅洛品種釀出來的酒,則PVA可以分辨黑后葡萄種類。為了提高實驗的可信度,我們進行了隨機的測試,直接利用表面聲波氣體感測器去分辨其四支紅酒透過實驗可以發現成功分辨出四支紅酒。


    In this research, thermal desorption tendon with gas chromatography-mass spectrum (GC-MS) system has been used to find the marker of VOCs in red wine with different grape varieties. After getting the marker, we utilize the principle of surface acoustic wave (SAW) to develop a highly sensitive electronic nose sensing system for detecting the marker. 113~114MHz SAW chips are fabricated by MEMS techniques with lithography process; gold interdigital transducers and heater line are deposited on the 128°YX-LiNbO3. The adsorption of VOCs by coating polymer on sensing area will modulate the velocity of acoustic wave because of the loading effect. Therefore, we can observe the frequency shift to identify the VOCs and the limited concentration. Our goal is to develop a portable sensing device for analyzing the aroma of red wine to discriminate the different grape varieties.
    This report experiments with three grape varieties(Cabernet sauvignon、Merlot、blackqueen), which is Blue Nun Merlot(100% Merlot)、Blue Nun Cabernet sauvignon (100% Cabernet sauvignon)、King(100% blackqueen)from LH winery in Taiwan, and the probably fake red wine(Dadung with Cabernet sauvignon). As a result, the blackqueen grape variety possibly has unique VOCs, which are Acetic acid, methyl ester、2-Pentanone、Disulfide, dimethyl、Acetic acid, 2-methylpropyl ester and 2-Pentanol; Merlot grape variety probably has special VOCs such that 2,3-Butanedione. Then, we can use SAW system to detect the aroma of red wine and determine the frequency shift to distinguish between them. The results show that using PVB as detecting material can distinguish Merlot from the others where as PVA can differentiate blackqueen from the others. Finally, we conducted the random test to prove the accuracy of SAW sensors. As a result, our SAW sensor can successfully distinguish between them.

    摘要..................i Abstract.............ii 致謝.................iii 圖目錄...............viii 表目錄.................xi 1.緒論..................0 1.1研究動機.............0 1.2研究目標.............1 1.2.1熱脫附氣相層析質譜儀對於紅酒氣味分析目標...... 1 1.2.2表面聲波感測器對於紅酒氣味分析目標........... 2 2.文獻回顧...................................... 3 2.1 氣體分析方法................................ 3 2.1.1 FTIR..................................... 3 2.1.2 FID...................................... 4 2.1.3 GC-MS.................................... 5 2.2 樣品預濃縮.................................. 6 2.2.1 固相微萃取(SPME).......................... 6 2.2.2 熱脫附(TD)................................ 6 2.3氣體感測器介紹............................... 7 2.3.1氣體感測器應用介紹.......................... 8 2.3.2氣體感測器種類............................. 8 2.3.3.1半導體氣體感測器(Metal oxide semiconductor gas sensor)... 8 2.3.3.2紅外線氣體感測器(Infrared gas sensor).................... 9 2.3.3.3石英晶體微量天秤(Quartz crystal microbalance)............ 10 2.3.3.4光離子化偵測器(Photo ionization detector)................ 10 2.3.3.5表面聲波氣體感測器(Surface acoustic wave gas sensor)..... 11 2.3.3.6各種電子鼻之比較......................................... 11 2.4紅酒氣體分析及感測之相關文獻.................................. 13 3.表面聲波感測器介紹及其原理..................................... 16 3.1表面聲波.................................................... 16 3.2壓電材料.................................................... 17 3.2.1壓電基板的材料種類及參數................................... 18 3.2.2壓電基材的插入損失( insertion loss,IL )................... 20 3.3指叉式電極轉換器( interdigital transducers,IDT )............ 22 3.4壓電效應.................................................... 25 3.5表面聲波感測機制............................................. 28 4.表面聲波感測器設計............................................ 30 4.1表面聲波晶片設計及製程........................................ 30 4.1.1表面聲波晶片設計........................................... 30 4.1.2黃光製程.................................................. 32 4.2震盪電路設計................................................. 36 4.3塗佈感測薄膜................................................. 38 4.3.1高分子塗佈方式............................................. 39 4.3.2高分子吸附形式............................................. 39 4.3.3高分子選擇................................................. 41 5.實驗參數設計及量測系統架設..................................... 43 5.1 TD-GC-MS................................................... 43 5.1.1 採樣管介紹與校正(Conditioning)............................ 43 5.1.2 樣品採樣................................................. 44 5.1.3 實驗參數設計............................................. 45 5.1.3.1 熱脫附儀(TD)........................................... 45 5.1.3.2 氣相層析質譜儀(GC-MS)................................... 46 5.1.4 數據分析................................................. 47 5.1.4.1 滯留時間(Retention time, RT)........................... 47 5.1.4.2 訊號峰高度(Peak height)................................ 47 5.1.4.3 訊號峰面積(Peak Area).................................. 48 5.2 表面聲波陣列氣體感測器( SAW sensor array)................... 49 5.2.1 實驗所需之儀器........................................... 49 5.2.2 微腔體設計............................................... 54 5.2.3 實驗步驟................................................. 55 6.實驗結果與討論............................................... 58 6.1 熱脫附氣相層析質譜儀結果..................................... 58 6.1.1 層析管柱DB-624分析結果.................................... 59 6.1.2 層析管柱DB-WAX分析結果.................................... 62 6.1.3 再現性................................................... 63 6.2 表面聲波陣列氣體感測器結果................................... 66 6.2.1 2-ports表面穩定性測試..................................... 66 6.2.2 4-ports系統穩定性測試..................................... 68 6.2.3 紅酒氣味量測............................................. 71 6.2.3.1 感測材料: PVB.......................................... 72 6.2.3.2 感測材料: PVA.......................................... 75 6.2.3.3 感測材料: P4VP......................................... 77 6.2.3.4 感測材料: PS........................................... 79 6.2.3.5 感測材料: PNVP......................................... 82 6.2.3.6 感測材料: PMMA......................................... 84 6.2.3.7 六種高分子以及Figaro sensor對於紅酒反應比較.............. 86 6.3 紅酒隨機量測............................................... 90 7.結論與未來進度............................................... 93 8.參考文獻..................................................... 96

    [1] 梁莉莎, "葡萄酒釀造技術與市場趨勢研究."
    [2] J. 日本分光, "https://www.jasco.co.jp/jpn/technique/internet-seminar/ftir/ftir2.html."
    [3] M. Jackson and H. H. Mantsch, "The use and misuse of FTIR spectroscopy in the determination of protein structure," Critical reviews in biochemistry and molecular biology, vol. 30, no. 2, pp. 95-120, 1995.
    [4] T. J. Christian et al., "Comprehensive laboratory measurements of biomass‐burning emissions: 1. Emissions from Indonesian, African, and other fuels," Journal of Geophysical Research: Atmospheres, vol. 108, no. D23, 2003.
    [5] J. Cai, P. Lin, X. Zhu, and Q. Su, "Comparative analysis of clary sage (S. sclarea L.) oil volatiles by GC–FTIR and GC–MS," Food chemistry, vol. 99, no. 2, pp. 401-407, 2006.
    [6] S. Garhwal, "Fourier transform infrared (ft-ir) spectroscopy in an-overview," Research Journal of Medicinal Plant, vol. 5, no. 2, pp. 127-135, 2011.
    [7] Agilent, "http://www.chem-agilent.com/accessagilent/article.php?page=201101-05."
    [8] M. de Blas, M. Navazo, L. Alonso, N. Durana, and J. Iza, "Automatic on-line monitoring of atmospheric volatile organic compounds: Gas chromatography–mass spectrometry and gas chromatography–flame ionization detection as complementary systems," Science of the total environment, vol. 409, no. 24, pp. 5459-5469, 2011.
    [9] J. Tian et al., "Phenotype differentiation of three E. coli strains by GC-FID and GC–MS based metabolomics," Journal of Chromatography B, vol. 871, no. 2, pp. 220-226, 2008.
    [10] M. A. Hayat, Principles and techniques of electron microscopy. Biological applications. Edward Arnold., 1981.
    [11] M. S. Allen, M. J. Lacey, and S. Boyd, "Determination of methoxypyrazines in red wines by stable isotope dilution gas chromatography-mass spectrometry," Journal of Agricultural and Food Chemistry, vol. 42, no. 8, pp. 1734-1738, 1994.
    [12] P. Bouchilloux, P. Darriet, R. Henry, V. Lavigne-Cruège, and D. Dubourdieu, "Identification of volatile and powerful odorous thiols in Bordeaux red wine varieties," Journal of agricultural and food chemistry, vol. 46, no. 8, pp. 3095-3099, 1998.
    [13] A. Spietelun, M. Pilarczyk, A. Kloskowski, and J. Namieśnik, "Current trends in solid-phase microextraction (SPME) fibre coatings," Chemical Society Reviews, vol. 39, no. 11, pp. 4524-4537, 2010.
    [14] Z. Zhang and J. Pawliszyn, "Analysis of organic compounds in environmental samples by headspace solid phase microextraction," Journal of Separation Science, vol. 16, no. 12, pp. 689-692, 1993.
    [15] G. Sagratini et al., "Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME–GC–MS and HPLC–MS," Food Chemistry, vol. 132, no. 3, pp. 1592-1599, 2012.
    [16] Y. Tao, H. Li, H. Wang, and L. Zhang, "Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China)," Journal of food composition and analysis, vol. 21, no. 8, pp. 689-694, 2008.
    [17] J. Rudnicka, T. Kowalkowski, T. Ligor, and B. Buszewski, "Determination of volatile organic compounds as biomarkers of lung cancer by SPME–GC–TOF/MS and chemometrics," Journal of Chromatography B, vol. 879, no. 30, pp. 3360-3366, 2011.
    [18] H. Yu, L. Xu, and P. Wang, "Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath," Journal of Chromatography B, vol. 826, no. 1, pp. 69-74, 2005.
    [19] C. Rodríguez-Navas, R. Forteza, and V. Cerdà, "Use of thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS) on identification of odorant emission focus by volatile organic compounds characterisation," Chemosphere, vol. 89, no. 11, pp. 1426-1436, 2012.
    [20] E. D. Ruan, J. L. Aalhus, M. Juárez, and H. Sabik, "Analysis of volatile and flavor compounds in grilled lean beef by stir bar sorptive extraction and thermal desorption—gas chromatography mass spectrometry," Food analytical methods, vol. 8, no. 2, pp. 363-370, 2015.
    [21] C. Franc, F. David, and G. de Revel, "Multi-residue off-flavour profiling in wine using stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry," Journal of Chromatography A, vol. 1216, no. 15, pp. 3318-3327, 2009.
    [22] W. J. LAUTENBERGER, E. V. KRING, and J. A. MORELLO, "A new personal badge monitor for organic vapors," The American Industrial Hygiene Association Journal, vol. 41, no. 10, pp. 737-747, 1980.
    [23] E. Palmes and A. F. Gunnison, "Personal monitoring device for gaseous contaminants," The American Industrial Hygiene Association Journal, vol. 34, no. 2, pp. 78-81, 1973.
    [24] J. Kristensson, "The use of ATD-50 system with fused silica capillaries in dynamic head space analysis," in Proceedings of the International Workshop, 1984, pp. 109-120.
    [25] M. Vagin and F. Winquist, "Electronic noses and tongues in food safety assurance," in High Throughput Screening for Food Safety Assessment: Elsevier, 2015, pp. 265-283.
    [26] J. Poprawski, P. Boilot, and F. Tetelin, "Counterfeiting and quantification using an electronic nose in the perfumed cleaner industry," Sensors and Actuators B: Chemical, vol. 116, no. 1, pp. 156-160, 2006.
    [27] S. Deshmukh, R. Bandyopadhyay, N. Bhattacharyya, R. Pandey, and A. Jana, "Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring–An overview," Talanta, vol. 144, pp. 329-340, 2015.
    [28] S. Dragonieri et al., "An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD," Lung cancer, vol. 64, no. 2, pp. 166-170, 2009.
    [29] M. O’Connell, G. Valdora, G. Peltzer, and R. M. Negri, "A practical approach for fish freshness determinations using a portable electronic nose," Sensors and Actuators B: chemical, vol. 80, no. 2, pp. 149-154, 2001.
    [30] H. Aikata et al., "Telomere reduction in human liver tissues with age and chronic inflammation," Experimental cell research, vol. 256, no. 2, pp. 578-582, 2000.
    [31] P.-H. Ku et al., "Polymer/ordered mesoporous carbon nanocomposite platelets as superior sensing materials for gas detection with surface acoustic wave devices," Langmuir, vol. 28, no. 31, pp. 11639-11645, 2012.
    [32] N. Bârsan and U. Weimar, "Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO 2 sensors in the presence of humidity," Journal of Physics: Condensed Matter, vol. 15, no. 20, p. R813, 2003.
    [33] D. S. A. a. C. K. Wolfgang Jessel, "http://archive.sensorsmag.com/articles/0102/34/main.shtml."
    [34] T. Wuen, "https://www.iap.tuwien.ac.at/www/atomic/instrumentation/qcm."
    [35] H. T. Nagle, R. Gutierrez-Osuna, and S. S. Schiffman, "The how and why of electronic noses," IEEE spectrum, vol. 35, no. 9, pp. 22-31, 1998.
    [36] V. Ferreira, R. Lopez, and J. F. Cacho, "Quantitative determination of the odorants of young red wines from different grape varieties," Journal of the Science of Food and Agriculture, vol. 80, no. 11, pp. 1659-1667, 2000.
    [37] I. Jarauta, J. Cacho, and V. Ferreira, "Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: An analytical study," Journal of agricultural and food chemistry, vol. 53, no. 10, pp. 4166-4177, 2005.
    [38] A. BAUTISTA‐ORTÍN, A. Lencina, M. CANO‐LÓPEZ, F. PARDO‐MÍNGUEZ, J. LÓPEZ‐ROCA, and E. GÓMEZ‐PLAZA, "The use of oak chips during the ageing of a red wine in stainless steel tanks or used barrels: effect of the contact time and size of the oak chips on aroma compounds," Australian Journal of Grape and Wine Research, vol. 14, no. 2, pp. 63-70, 2008.
    [39] R. de Andrés-de Prado, M. Yuste-Rojas, X. Sort, C. Andrés-Lacueva, M. Torres, and R. M. Lamuela-Raventós, "Effect of soil type on wines produced from Vitis vinifera L. cv. Grenache in commercial vineyards," Journal of agricultural and food chemistry, vol. 55, no. 3, pp. 779-786, 2007.
    [40] M. Ugliano and L. Moio, "The influence of malolactic fermentation and Oenococcus oeni strain on glycosidic aroma precursors and related volatile compounds of red wine," Journal of the Science of Food and Agriculture, vol. 86, no. 14, pp. 2468-2476, 2006.
    [41] C. Di Natale, F. A. Davide, A. D'Amico, P. Nelli, S. Groppelli, and G. Sberveglieri, "An electronic nose for the recognition of the vineyard of a red wine," Sensors and Actuators B: Chemical, vol. 33, no. 1-3, pp. 83-88, 1996.
    [42] J. Santos et al., "SAW sensor array for wine discrimination," Sensors and Actuators B: Chemical, vol. 107, no. 1, pp. 291-295, 2005.
    [43] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, vol. 1, no. 1, pp. 4-11, 1885.
    [44] 李. 楊啟榮, 施建富, "表面聲波生化感測器原理與應用技術," 2004.
    [45] R. White and F. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied physics letters, vol. 7, no. 12, pp. 314-316, 1965.
    [46] H. Wohltjen and R. Dessy, "Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description," Analytical Chemistry, vol. 51, no. 9, pp. 1458-1464, 1979.
    [47] W. Wang, S. He, S. Li, and Y. Pan, "High frequency stability oscillator for surface acoustic wave-based gas sensor," Smart materials and structures, vol. 15, no. 6, p. 1525, 2006.
    [48] W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, "Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator," Sensors and Actuators B: Chemical, vol. 125, no. 2, pp. 422-427, 2007.
    [49] A. Bryant, M. Poirier, D. Lee, and J. Vetelino, "A surface acoustic wave gas detector," MAINE UNIV ORONO1982.
    [50] 吳朗, "電子陶瓷:壓電陶瓷," 全欣, 1994.
    [51] C. Campbell, Surface acoustic wave devices for mobile and wireless communications. Academic press, 1998.
    [52] C. Campbell, Surface acoustic wave devices and their signal processing applications. Elsevier, 2012.
    [53] T. Imai, H. Nakahata, and N. Fujimori, "Surface acoustic wave device," ed: Google Patents, 1990.
    [54] K.-y. Hashimoto and K.-Y. Hashimoto, Surface acoustic wave devices in telecommunications. Springer, 2000.
    [55] 廖昌盛, "高頻寬頻表面聲波濾波器之研究," 2007.
    [56] J. Kirschner, "Surface Acoustic Wave Sensors (SAWS)."
    [57] P. M. Moubarak, P. Ben-Tzvi, and M. E. Zaghloul, "A self-calibrating mathematical model for the direct piezoelectric effect of a new MEMS tilt sensor," IEEE Sensors Journal, vol. 12, no. 5, pp. 1033-1042, 2012.
    [58] J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors, MEMS, and smart devices. Wiley Online Library, 2001.
    [59] J. W. Grate and R. A. McGill, "Dewetting effects on polymer-coated surface acoustic wave vapor sensors," Analytical Chemistry, vol. 67, no. 21, pp. 4015-4019, 1995.
    [60] R. A. McGill, M. H. Abraham, and J. W. Grate, "Choosing polymer coatings for chemical sensors," Chemtech, vol. 24, no. 9, pp. 27-37, 1994.
    [61] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, 2004.
    [62] M. Cauchi et al., "Application of gas chromatography mass spectrometry (GC–MS) in conjunction with multivariate classification for the diagnosis of gastrointestinal diseases," Metabolomics, vol. 10, no. 6, p. 0, 2014.
    [63] E. Gallego, F. Roca, J. Perales, G. Sánchez, and P. Esplugas, "Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS," Waste management, vol. 32, no. 12, pp. 2469-2481, 2012.
    [64] K. Dettmer and W. Engewald, "Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds," Analytical and bioanalytical chemistry, vol. 373, no. 6, pp. 490-500, 2002.
    [65] S. Corparation, "http://www.shimadzu.com/an/retentiontime_parameters.html," 2016.
    [66] I. Agilent Technologies, "Understanding Your ChemStation," I. Agilent Technologies, 2004.
    [67] L. Burroughs, "Determining free sulfur dioxide in red wine," American journal of Enology and Viticulture, vol. 26, no. 1, pp. 25-29, 1975.
    [68] O. Gürbüz, J. M. Rouseff, and R. L. Rouseff, "Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography− olfactometry and gas chromatography− mass spectrometry," Journal of Agricultural and Food Chemistry, vol. 54, no. 11, pp. 3990-3996, 2006.
    [69] R. Perestrelo, A. Fernandes, F. Albuquerque, J. C. Marques, and J. d. S. Câmara, "Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds," Analytica Chimica Acta, vol. 563, no. 1-2, pp. 154-164, 2006.
    [70] M. Liu, Z. Zeng, and Y. Tian, "Elimination of matrix effects for headspace solid-phase microextraction of important volatile compounds in red wine using a novel coating," Analytica Chimica Acta, vol. 540, no. 2, pp. 341-353, 2005.

    QR CODE