簡易檢索 / 詳目顯示

研究生: 曾威凱
Tseng, Wei Kai
論文名稱: 迴路式熱虹吸之冷凝器研究
Experiments on the Condenser of Loop Thermosyphon Heat Pipes
指導教授: 王訓忠
口試委員: 許文震
簡國祥
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 熱虹吸熱管冷凝器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗觀察迴路式熱虹吸熱管之垂直冷凝器的冷凝現象,主要的實驗參數為冷凝器的構造與表面親疏水性,包括:表面做親水處理之銅管、表面做疏水處理之銅管,以及表面做親水處理之溝槽管。三種冷凝管之冷凝效率依序為疏水銅管、溝槽銅管,與親水銅管,疏水銅管之冷凝熱阻可低於親水銅管達2-5倍之多;溝槽銅管之冷凝熱阻約為親水銅管的一半。疏水銅管之冷凝屬滴式凝結,凝結水以間歇方式流下,當增長最快的上段液滴達臨界尺寸後即迅速落下,路徑中掃清下方的液滴;親水溝槽管與平滑銅管皆為膜式凝結,其中親水銅管內冷凝液膜受水的表面張力影響,在流下的過程中會聚集於管圓周的某區域,使壁溫沿圓周呈現非均勻分佈。親水溝槽管中的溝槽提供毛細力,使液膜厚度沿圓周呈現均勻分佈,其上段中之冷凝水因可聚集於溝槽中,故溝槽管的上段熱阻為三者中的最小,但溝槽壁形成較大摩擦流阻而減緩冷凝水流下的速度,故溝槽管下段中的液膜增厚幅度為三者中最大。此外,親水銅管與親水溝槽銅管下方迴路中冷凝水位均有明顯震盪,平均冷凝水位主要受蒸汽摩擦壓降影響。


    摘要 i 誌謝 ii 目錄 iii 圖表目錄 v 符號表 viii 第一章 緒論 1 1.1研究背景 1 1.2基本原理與文獻回顧 2 1.2.1熱虹吸熱管原理 2 1.2.2迴路式熱虹吸熱管 3 1.3影響管內冷凝性能之參數 8 1.4研究目的 14 第二章 實驗設備與方法 19 2.1簡介 19 2.2 迴路式熱虹吸實驗 19 2.2.1實驗裝置 19 2.2.2實驗架構與配置 22 2.2.3實驗步驟 23 2.2.4實驗參數與實驗參數計算 24 第三章 實驗結果與討論 41 3.1冷凝過程 41 3.1.1親水銅管 41 3.1.2疏水銅管 44 3.1.3溝槽管 47 3.2冷凝熱阻 48 3.3 蒸發熱阻 50 3.4 蒸發器與液體通道水位差ΔH 50 第四章 結論 63 參考文獻 65 附錄 銅管外壁溫度量測準確度之數值檢驗 69

    [1] T. E. Tsai, H. H. Wu, C. C. Chang, S. L. Chen, Two-phase closed thermosyphon vapor-chamber system for electronic cooling, Int. Comm. Heat Mass Transfer, 37(2010) 484-489.
    [2] T. W. Davis, S. V. Garimella, Thermal resistance measurement across a wick structure using a novel thermosyphon test chamber, Exp. Heat Transfer, 21(2008)143-154.
    [3] A. Alizadehdakhel, M. Rahimi, A. A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, Int. Comm. Heat Mass Transfer, 37 (2010) 312-318.
    [4] S. Liu, J. Li, Q. Chen, Visualization of flow pattern in thermosyphon by ECT, Flow Measurement and Instrumentation, 18 (2007) 216-222.
    [5] P. Amatachaya, W. Srimuang, Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT), International Communications in Heat and Mass Transfer, 37 (2010) 293-298.
    [6] A. Franco, S. Filippeschi, Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results, Microgravity Sci. Technol., 24(2012) 165-179.
    [7] W. Qu, Hydrodynamics of two-phase loop thermosyphon, Frontiers in Heat Pipes, 1 (2010) 023004.
    [8] F. H. Milanez, M. B. H. Mantelli, Heat transfer limit due to pressure drop of a loop thermosyphon, 15th International Heat Pipe Conference, Clemson, USA, April 25-30, 2010.
    [9] S. W. Chang, K. F. Chiang, C. Y. Lin, Loop thermosyphon electronic cooling device operated at sub-atmospheric pressure, 10th International Heat Pipe Symposium, Taipei, Taiwan, Nov. 6-9, 2011.
    [10] 康尚文、黃俊賢,迴路式虹吸熱管之研製與可視化觀察,熱管理產業通訊,第24 期。
    [11] S. L. Mahmood, N. Bagha, M.A.R. Akhanda, A.K.M.S. Islam, 2008. Heat transfer characteristics inside an evaporator of a two-phase closed loop thermosyphon with saw tooth ribbed evaporator surface. In “Advanced Design and Manufacture to Gain a Competitive Edge”, ed. X.T. Yan, 111-120. Springer London.
    [12] R. Khodabandeh, R. Furberg, Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop, Int. J. Therm. Sci., 49(2010)1183-1192.
    [13] 陳聖謙,迴路式熱虹吸管之薄膜蒸發,國立臺灣大學機械工程學研究所碩士論文,六月,2006。
    [14] R.C.Chu, R.E. Simons, G.M. Chrysle, Experimental investigation of an enhanced thermosyphon heat loop for cooling of a high performance electronics module, 15th IEEE SEMI-THERMTM Symposium, 1999.
    [15] W. C. Wang, X. H. Ma, Z. D. Wei, P. Yu, Two-phase flow patterns and transition characteristics for in-tube condensation with different surface inclinations, Int. J. Heat Mass Transfer, 41(1998)4341-4349.
    [16] J.W. Rose, Dropwise condensation theory and experiment: a review, Proc. Instrn. Mech. Engrs. Part A: J Power and Energy, 216(2002)115-128.
    [17] 黃中青,迴路式熱虹吸之冷凝器的可視化實驗,國立清華大學動力機械工程研究所碩士論文,七月,2013。
    [18] O. Kabov, I. Marchuk, A. Glushchuk, Y. Lyulin, Enhancement of vapour condensation in heat pipes, 16th International Heat Pipe Conference, Lyon, France, May 20-24, 2012.
    [19] P.K. Panday, Two-dimensional turbulent film condensation of vapours flowing inside a vertical tube and between parallel plates: a numerical approach, Int. J. Refrigeration 26 (2003) 492–503.
    [20] R. Bellinghausen, U. Renz, Heat transfer and film thickness during condensation of steam flowing at high velocity in a vertical pipe, Int. J. Heat Mass Transfer, Vol. 35, No.3, pp. 683-689, 1992.
    [21] Z. Huang, J. Zhang, J. Cheng, S. Xu, P. Pi, Z. Cai, X. Wen, Z. Yang, Preparation and characterization of gradient wettability surface depending on controlling Cu(OH)2 nanoribbon arrays growth on copper substrate, Appl. Surface Sci. 259(2012)142–146.
    [22] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer, 53(2010)1498-1506.
    [23] S.-C. Wong , Y,-C. Lin, J.-H, Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Thermal Sci. 52(2012)154-169.
    [24] S.-C. Wong, C.-W. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe, Int. J. Heat Mass Transfer, 55(2012)2229-2234.
    [25] S.-C. Wong, H.-H. Tseng, S.-H. Chen, Visualization experiments on the condensation process in heat pipe wicks, Int. J. Heat Mass Transfer, 68(2014)625-632.
    [26] eFunda, Inc. 2014. “Polymer Material Properties.” http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=TPE&MinorID=1

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE