研究生: |
洪嘉億 Chia-I Hung |
---|---|
論文名稱: |
場控單壁奈米碳管膜之親疏水性變化 Liquid migration on single-walled carbon nanotube films at low electric field and magnetic field |
指導教授: |
徐文光
Wen-Kuang Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 電溼潤 、單壁碳管膜 、磁場 、電場 、電泳 |
外文關鍵詞: | electrowetting, SWNTF, maganetic field, electric field, electrophoresis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分二部份,第一部份利用疏水性單壁奈米碳管薄膜作為電溼潤的固體表面,再藉由浸泡NH3(aq),使碳管表面吸附NH3,並藉由電場使表面NH4+大量累積,形成電雙層。因同性電荷相互間的排斥,造成固-液間界面能下降,導致接觸角減少,最後達到電溼潤的效應。
論文第二部分利用不同磁場強度對水溶液中的H+產生向碳管表面移動或者遠離的方向控制,做為影響表面NH4+電荷累積的條件,電雙層在不同電容值的情況下,會對液體的接觸角產生不同的大小,因此,本節主要在探討磁場方向及磁場強度大小控制液體溼潤性行為。
Surface tension of silicon wafer decorated with NH3-containing single-walled carbon nanotube films (SWNTFs) is controllable by electric as well as magnetic fields. Field modulated contact angle and droplet migration are characterized and surface tensions of pristine and decorated nanotube films are calculated from experimental data by Owens-Wendt Model.
The electro-wetting (DI-water and ethylene glycol) on SWNTF is studied upon external magnetic field. Feasible mechanism is proposed and surface tensions are calculated based on experimental data using Owens-Wendt Model and Young’s Equation. Finally, we propose an model to explain the surface tension of closed tubes.
References
[1] Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Eds , Springer-Verlag , Berlin (2001).
[2] Saito R, Dresselhaus MS, Dresselhaus G. Physical Properties of Carbon Nanotubes. Imperial College9 (1998).
[3] Dresselhaus MS, Dresselhaus G, Eklunk PC. Science of Fullerenes & Carbon Nanotubes. San Diego:Academic Press (1996).
Dresselhaus MS, Eklund PC. Adv Phys. 49, 705 (2000).
[4] R. Waser, Nanoelectronics and Information Technology, Wiley-VCH, 2003
[5] N. Hamada, S.-I. Swada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
[6] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992).
[7] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
[8] N. Hamada, S.-I. Swada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
[9] 金子克美.固體物理。1992, 27:403 (2001).
[10] Ijima S, Ichihashi T. Nature.363, 603 (1993).
[11] L. Ci , J. Wei, B. Wei, J. Liang, C. Xu and D. Wu, Carbon 39, 329 (2001).
[12] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. hle, Y. A. Kim, T. Hayashi, and M. Endo, Appl. Phys. Lett. 77 , 3385 (2000).
[13] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu and D. Wu, Chem.
Phys. Lett. 362, 285 (2002).
[14] M. G. Lippmann, Ann. Chim. Phys. 5, 494 (1875)
[15] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, Sens. and actua. A 95, 259 (2002)
[16] T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, J. Appl. Phys. 89, 1441 (2001)
[17] M. Gunji and M. Washizu, J. Phys. D: Appl. Phys. 38, 2417 (2005)
[18] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang and D. Zhu, Angew. Chem. Int. Ed. 40, 1743 (2001)
[19] Hyejin Moon and Sung Kwon Cho, J. appl. Phys. 92, 7 (2002)
[20] C.H. Wu, J. Colloid Interface Sci. 311, 2 (2007)
[21] D. K. Owen, and R. C. Wendt, J. appl. Poly. Sci. 13, 1741 (1969)
[22] Arthur W. Adamson, Alice P. Gast. Physical Chemistry of Surfaces(6th ed.). New York, Wiley 183~192(1997)
[23] Charles Kittel. Introduction to Solid State Physics.(8th ed.) USA, Wiley 153~156.(2004)
[24] F. M. Fowkes, Ind. Engr. Chem. 56, 40, (1964)