簡易檢索 / 詳目顯示

研究生: 朱君瀚
Chu, Chun-Han
論文名稱: 以精密塗佈技術製備高分子發光二極體
指導教授: 劉大佼
Liu, Ta-Jo
口試委員: 吳平耀
朱文彬
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 104
中文關鍵詞: 塗佈狹縫式塗佈高分子發光二極體
外文關鍵詞: coating, slot die coating, PLED
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用濕式塗佈技術(wet coating)製備高分子發光二極體(polymer light emitting diodes, PLED)。PLED結構為兩電極間夾著有機高分子層,包含電洞注入層(hole injection layer)、發光層(emitting layer)與電子傳導層(electron transporting layer)。其原理為施加電壓後陰陽極產生分別電子電洞並注入有機層再結合而放光。
    本研究分別以高分子PFO [Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with N,N-Bis(4-methylphenyl)-4-aniline]與PEDOT:PSS [Poly(3,4-ethylenedioxythiophene):poly(styrene)]做為發光與電洞注入材料,首先利用旋轉塗佈技術製作出小面積藍光PLED;並改變條件與加入小分子電子傳導材料以尋求最佳元件性能。待材料與結構確定後,再嘗試以狹縫式塗佈技術(slot die coating)製備高分子薄膜。為了克服PEDOT:PSS難以成膜的問題,本研究嘗試加入其他溶劑並改變乾燥條件而成功塗佈出PEDOT:PSS薄膜;接著將PFO成膜於PEDOT:PSS上。PFO薄膜在乾燥過程中會產生許多乾燥缺陷,本研究改變溶劑與塗佈條件而大幅減少乾燥缺陷。最後嘗試以狹縫式塗佈技術製備2cm×2cm的PLED元件,證明以狹縫式塗佈製備PLED是可行的。


    摘要 I 圖目錄 IV 表目錄 IX 第一章、緒論 1 1.1前言 1 1.2有機發光二極體的發展 2 1.3高分子有機發光二極體的發展 4 1.4 塗佈技術介紹 8 1.5研究動機與研究架構 9 第二章、文獻回顧 12 2.1有機發光二極體概論 12 2.1.1發光原理 12 2.1.2有機發光二極體結構分析 14 2.1.3有機發光二極體結構的改良 17 2.1.4高分子發光材料分析 26 2.1.5有機發光二極體之效率分析 29 2.1.6 高分子與小分子發光二極體的比較 31 2.2塗佈技術概論 34 2.2.1旋轉塗佈法 (spin coating) 34 2.2.2刮刀塗佈技術 (blade coating) 35 2.2.3噴墨印刷技術 (inkjet-printing) 36 2.2.4凹版印刷(gravure printing) 37 2.2.5網版印刷(screen printing) 40 2.2.6狹縫式塗佈(slot die coating) 42 2.2.7其他塗佈技術 43 第三章、實驗方法與流程 46 3.1實驗藥品 46 3.2 實驗儀器 49 3.3 實驗流程 54 第四章、實驗數據與結果討論 59 4.1 以旋轉塗佈法製作PLED元件 59 4.1.1 PEDOT:PSS成膜條件的探討 59 4.1.2 PFO成膜條件的探討 60 4.1.3 電子傳導材料成膜條件的探討 71 4.2 以狹縫式塗佈技術製備PLED元件之可行性探討 74 4-2-1 以狹縫式塗佈製備電洞注入層 74 4.2.2以狹縫式塗佈製備高分子發光層 85 4.2.3以狹縫式塗佈技術製備PLED元件 91 第五章、結論與未來工作 97 第六章、參考文獻 99

    1Tang, C. W. & VanSlyke, S. A. Organic electroluminescent
    diodes. Applied Physics Letters 51, 913-915 (1987).
    2Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks,
    R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A.
    B. Light-emitting diodes based on conjugated polymers.
    Nature 347, 539-541 (1990).
    3Alsalhi, M. S., Alam, J., Dass, L. A. & Raja, M. Recent
    advances in conjugated polymers for light emitting devices.
    International journal of molecular sciences 12, 2036-2054
    (2011).
    4Schoo, H. F. M. & Demandt, R. J. C. E. Materials for
    polymer-light emitting diodes. Philips Journal of Research
    51, 527-533 (1998).
    5Braun, D. & Heeger, A. J. Visible light emission from
    semiconducting polymer diodes. Applied Physics Letters 58,
    1982-1984 (1991).
    6Tessler, N. Light emitting diodes from molecular and
    polymer semiconductors. Encyclopedia of Materials: Science
    and Technology, 4486-4490 (2001).
    7Greenham, N. C., Moratti S.C., Bradley, D.D.C., Friend,
    R.H.& Holmes, A.B. Efficient light-emitting-diodes based on
    polymers with high electron-affinities. Nature 365, 628-630
    (1993).
    8Grice, A. W. & Bradley, D. D. C. High brightness and
    efficiency blue light-emitting polymer diodes. Applied
    Physics Letters 73, 629-631 (1998).
    9Phillips. Polymer light-emitting diodes.
    10Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J.
    H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos
    Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W.
    R. Electroluminescence in conjugated polymers. Nature 397,
    121-128 (1999).
    11Deng, X. Y. Light-emitting devices with conjugated
    polymers. International journal of molecular sciences 12,
    1575-1594 (2011).
    12Quan, S., Teng, F., Xu, Z., Qian, L. & Wang, Y. Improved
    polymer light-emitting diodes by the tuning of charge
    balance. Solid-State Electronics 50, 1506-1509 (2006).
    13Chun, A. R., Kim, S. H., Kim, C. G., Lee, S.J., Kwon, T.
    W., Park, D. K., Cho, S. J., Lee, J.G., Lee, S. H., Guo,
    Z. X. & Woo, H. S. Enhanced quantum efficiency in polymer
    light-emitting diode with water soluble non-conjugated
    polymer. Synthetic Metals 158, 876-878 (2008).
    14Cea, P., Hua, Y., Pearson, C., Wang, C., Bryce, M. R.,
    Lopez, M. C. & Petty, M. C. A blended layer MEH-PPV
    electroluminiscent device incorporating a new electron
    transport material. Materials Science and Engineering C
    22, 87-89 (2002).
    15Doi, S., Yamada, T., Tsubata, Y. & Ueda, M. Novel blue
    light-emitting polymers for PLED. Proceeding of Society
    for Photo- Instrumentation and Engineering 5519, 161-172
    (2004).
    16Kumar, A., Bhatnagar, P. K., Mathur, P. C., Tada, K. &
    Onoda, M. Improved electrical and optical properties of
    MEH-PPV light emitting diodes using Ba buffer layer and
    porphyrin. Applied Surface Science 252, 3953-3955 (2006).
    17Huang, J., Li, G., Wu, E., Xu, Q. & Yang, Y. Achieving
    high-efficiency polymer white-light-emitting devices.
    Advanced Materials 18, 114-117 (2006).
    18Youn, H. & Yang, M. Solution processed polymer light-
    emitting diodes utilizing a ZnO/organic ionic interlayer
    with Al cathode. Applied Physics Letters 97 (2010).
    19Shin, S. B., Gong, S. C., Lee, H. M., Jang, J. G., Gong,
    M. S., Ryu, S. O., Lee, J. Y., Chang, Y. C. & Chang, H. J.
    Improving light efficiency of white polymer light emitting
    diodes by introducing the TPBi exciton protection layer.
    Thin Solid Films 517, 4143-4146 (2009).
    20Liu, Z. Y., Tseng, S. R., Chao, Y. C., Chen, C. Y., Meng,
    H. F., Horng, S. F., Wu, Y. H. & Chen, S. H. Solution-
    processed small molecular electron transport layer for
    multilayer polymer light-emitting diodes. Synthetic Metals
    161, 426-430 (2011).
    21Tseng, S. R., Meng, H. F., Lee, K. C. & Horng, S. F.
    Multilayer polymer light-emitting diodes by blade coating
    method. Applied Physics Letters 93, 153308 (2008).
    22Earmme, T., Ahmed, E. & Jenekhe, S. A. Solution-processed
    highly efficient blue phosphorescent polymer light-
    emitting diodes enabled by a new electron transport
    material. Advanced Materials 22 (2010).
    23Xu, D., Deng, Z., Li, X., Chen, Z. & Liang, C. Enhanced
    quantum efficiency in polymer electroluminescence devices
    by inserting an ultrathin PMMA layer. Applied Surface
    Science 253 (2007).
    24Singh, I., Madhwal, D., Verma, M., Kumar, A., Rait, S.,
    Kaur, I., Bharadwaj, L. M., Bhatia, C. S., Bhatnagar, P.
    K. & Mathur, P. C. Enhanced luminance of MEH-PPV based
    PLEDs using single walled carbon nanotube composite as an
    electron transporting layer. Journal of Luminescence 130
    (2010).
    25Lee, K. W., Lee, S. P., Choi, H., Mo, K. H., Jang, J. W.,
    Kweon, H. & Lee, C. E. Enhanced electroluminescence in
    polymer-nanotube composites. Applied Physics Letters 91
    (2007).
    26Liu, D., Flna, M., Guo, J., Chen, X., Liu, G., Johnson, S.
    N. & Mao, S. S. Organic light-emitting diodes with carbon
    nanotube cathode-organic interface layer. Applied Physics
    Letters 94 (2009).
    27Lee, S. P., Choi, H., Lee, K. W., Mo, K. H., Jang, J. W.,
    Lee, E., Kim, I. M. & Lee, C. E. Blending MEH-PPV
    conjugate polymers with single-walled carbon nanotubes for
    polymer light-emitting diodes. Journal of the Korean
    Physical Society 48, 146-149 (2006).
    28Wu, W. S., Inbasekaran, M., Hudark, M., Welsh, D., Yu, W.,
    Cheng, Y., Wang, C., Kram, S., Tacey, M., Bernius, M.,
    Fletcher, R., Kiszka, K., Munger, S. & O'Brien, J. Recent
    development of polyfluorene-based Rgb materials for light
    emitting diodes. Microelectron J 35, 343-348 (2004).
    29Skotheim, T. A. & Reynolds, J. R. Conjugated Polymers-
    Processing and Applications 3rd edition. CRC Press (2007).
    30Yang, X. H., Neher, D., Hertel, D. & Daubler, T. K. Highly
    efficient single-layer polymer electrophosphorescent
    devices. Advanced Materials 16 (2004).
    31Wu, H. B., Zou, J., Liu, F., Wang, L., Mikhailovsky, A.,
    Bazan, G. C., Yang, W. & Cao, Y. Efficient single active
    layer electrophosphorescent white polymer light-emitting
    diodes. Advanced Materials 20 (2008).
    32陳金鑫&黃孝文, OLED夢幻顯示器-OLED材料與元件, 五南書局 (2009).
    33Visser, R. J. Application of polymer light-emitting
    materials in light-emitting diodes, backlights and
    displays. Philips Journal of Research 51 (1998).
    34Liao, Y. M., Shin, H. M., Hsu, K. H., Hsu, C. S., Chao, Y.
    C., Lin, S. C., Chen, C. Y. & Meng, H. F. High-performance
    poly(2,3-diphenyl-1,4-phenylene vinylene)-based polymer
    light-emitting diodes by blade coating method. Polymer 52
    (2011).
    35Yang, Y. Polymer light emitting diodes, inkjet printing
    of. Encyclopedia of Materials: Science and Technology,
    7381-7384 (2001).
    36Kwon, J. T., Eom, S. H., Moon, B. S., Shin, J. K., Kim, K.
    S., Lee, S. H. & Lee, Y. S. Studies on printing inks
    containing poly[2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-
    phenylenevinylene] as an emissive material for the
    fabrication of polymer light-emitting diodes by inkjet
    printing. Bulletin of the Korean Chemical Society 33, 464-
    468 (2012).
    37Lee, S. H., Hwang, J. Y., Kang, K. & Kang, H. Fabrication
    of organic light emitting display using inkjet printing
    technology. Isot: 2009 International Symposium on
    Optomechatronic Technologies, 71-76 (2009).
    38Kopola, P., Tuomikoski, M., Suhonen, R. & Maaninen, A.
    Gravure printed organic light emitting diodes for lighting
    applications. Thin Solid Films 517, 5757-5762 (2009).
    39Chung, D. Y., Huang, J., Bradley, D. D. C. & Campbell, A.
    J. High performance, flexible polymer light-emitting
    diodes (PLEDs) with gravure contact printed hole injection
    and light emitting layers. Organic Electronics 11, 1088-
    1095 (2010).
    40Lee, D. H., Choi, J. S., Chae, H., Chung, C. H. & Cho, S.
    M. Highly efficient phosphorescent polymer OLEDs
    fabricated by screen printing. Displays 29, 436-439
    (2008).
    41Lee, D. H., Choi, J. S., Chae, H., Chung, C. H. & Cho, S.
    M. Screen-printed white OLED based on polystyrene as a
    host polymer. Current Applied Physics 9, 161-164 (2009).
    42Krebs, F. C. Polymer solar cell modules prepared using
    roll-to-roll methods: knife-over-edge coating, slot-die
    coating and screen printing. Solar Energy Materials and
    Solar Cells 93, 465-475 (2009).
    43Manceau, M., Angmo, D., Jorgensen, M. & Krebs, F. C. ITO-
    free flexible polymer solar cells:From small model devices
    to roll-to-roll processed large modules. Organic
    Electronics 12, 566-574 (2011).
    44Larsen-Olsen, T. T., Anderson, T. R., Andreasen, B.,
    Bottiger, A. P. L., Bundgaard, E., Norrman, Kion.,
    Andreasen, J. W., Jorgensen, M. & Krebs, F. C. Roll-to-
    roll processed polymer tandem solar cells partially
    processed from water. Solar Energy Materials and Solar
    Cells 97, 43-49 (2012).
    45Aoki, Y., Shakutsui, M. & Fujita, K. Stacking layered
    structure of polymer light emitting diodes prepared by
    evaporative spray deposition using ultradilute solution
    for improving carrier balance. Thin Solid Films 518, 493-
    496 (2009).
    46Youn, H., Jeon, K., Shin, S. & Yang, M. All-solution
    blade-slit coated polymer light-emitting diodes. Organic
    Electronics 13, 1470-1478 (2012).
    47Sun, J. X., Peng, Q. M., Li, X. J., Li, M. L. & Li, F.
    Study of the magnetic field effects on carriers' mobility
    in polymer based light-emitting diodes. Synthetic Metals
    162, 257-260 (2012).
    48Tsai, K. H., Shiu, S. C. & Lin, C. F. Improving the
    conductivity of hole injection layer by heating PEDOT:PSS.
    Proceeding of Society for Photo- Instrumentation and
    Engineering 7052 (2008).
    49Rodriguez, A. B., Voigt, M. M., Martin, S. J., Whittle, T.
    J., Dalgliesh, R. M., Thompson, R. L., Lidzey, D. G. &
    Geoghegan, M. Structure of films of poly(3,4-ethylene
    dioxythiophene)-poly(styrene sulfonate) crosslinked with
    glycerol. Journal of Materials Chemistry 21 (2011).
    50Wu, H. B., Zou, J., An, D., Liu, F., Yang, W., Peng, J.,
    Mikhailovsky, A., Bazan, G. C. & Cao, Y. A new approach to
    efficiency enhancement of polymer light-emitting diodes by
    deposition of anode buffer layers in the presence of
    additives. Organic Electronics 10, 1562-1570 (2009).
    51Kaihovirta, N. J., Tobjork, D., Makela, T. & Osterbacka,
    R. Low-voltage organic transistors fabricated using
    reverse gravure coating on prepatterned substrates.
    Advanced Engineering Materials 10, 640-643 (2008).
    52Pesach, D. & Marmur, A. Marangoni effects in the spreading
    of liquid-mixtures on a solid. Langmuir 3, 519-524 (1987).
    53Peh, R. J., Lu, Y., Zhao, F., Lee, C. L. K. & Kwan, W. L.
    Vacuum-free processed transparent inverted organic solar
    cells with spray-coated PEDOT:PSS anode. Solar Energy
    Materials and Solar Cells 95 (2011).
    54Krebs, F. C., Sondergaard, R. & Jorgensen, M. Printed
    metal back electrodes for R2R fabricated polymer solar
    cells studied using the LBIC technique. Solar Energy
    Materials and Solar Cells 95, 1348-1353 (2011).
    55Gong, X. O., Iyer, P. K., Moses, D., Bazan, G. C., Heeger,
    A. J. & Xiao, S. S. Stabilized blue emission from
    polyfluorene-based light-emitting diodes: Elimination of
    fluorenone defects. Advanced Functional Materials 13, 325-
    330 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE