研究生: |
梅森 Maysam Shahrokhi |
---|---|
論文名稱: |
Development of an immunomagnetic microchip for cancer stem cell isolation 腫瘤幹細胞分離之免疫磁性晶片開發 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
徐琅
Hsu, Long 彭慧玲 Peng, Hwei Ling |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 微晶片 、癌症幹細胞 、磁性分離 、三維球體 |
外文關鍵詞: | microchip, cancer stem cell, magnetic isolation, 3D sphere |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
癌細胞源自於體內正常細胞開始異常增生並逐步轉變成惡性細胞。這群惡性增生的細胞中,存在極少數量的細胞擁有自我更新與多重分化的特性。除此之外,這一類細胞還具備獨自形成細胞群落發展成腫瘤的潛力以及表現許多與正常幹細胞相同的生物標誌,進而被研究學者定義為癌症幹細胞(Cancer stem cell)。腫瘤癌化與施予化療或手術後癌症的再復發是目前癌症病患死亡的主要原因。另一方面,越來愈多的研究指出癌症幹細胞的新生生能力與抗藥性在癌症治療的抵抗性中扮演重要的角色,因此,癌症幹細胞的研究也越發重要。而如何建立適當的癌症幹細胞辨識與篩選方法並建立合適的寄代培養系統將增進日後生物標記的發現與理解癌症幹細胞自我更新與多重分化的分子調控機制。傳統上共軛焦螢光顯微鏡經常被用於螢光標定影像的判讀,而流式細胞儀則較常使用於分離篩選癌症幹細胞,近期發展之微流體系統更有助於整合辨識、分離篩選與培養於一實驗室晶片提供完整的研究檢測平台。本研究之目的在於設計一癌症幹細胞篩選晶片以成功分離病人腫瘤檢體中的癌症幹細胞,同時以傳統的共軛焦顯微鏡探討癌症幹細胞生物標誌的特徵表現。
論文中,首先使用共軛焦螢光顯微鏡針對三個癌症幹細胞標記,CD133, CD44與Claudin-4在二維與三維細胞培養中的表現量多寡做探討,並選擇表現較高的細胞標記做為下一步在細胞篩選晶片中以免疫磁性分離方法分離癌症幹細胞時所需使用的辨識標記。實驗中使用人類大腸癌細胞HCT-8進行二維單層細胞及三維球體形成 (sphere formation) 培養,運用免疫螢光染色的方式比較生物標記表現。接續,選用表現量最高的標記在微流體晶片系統中進行免疫磁性篩選以分離出腫瘤細胞樣本中的癌症幹細胞。免疫磁性細胞篩選晶片內具有500個由光敏性聚乙二醇二丙烯酸酯經紫外光照射形成的微柱結構,微柱結構中混合了帶有磁性的奈米粒子,能藉由晶片外加磁鐵使微柱結構產生磁性,以微磁柱陣列的方式捕捉被標定磁珠的癌症幹細胞。標定使用的Dynabead磁珠表面上修飾有能夠辨認癌症幹細胞之細胞標記的抗體,磁珠經由抗體連結癌症幹細胞表面抗原使得細胞帶有磁性而能夠被小磁柱吸引捕捉。磁珠搭配微磁柱陣列的設計能將癌症病患血液或腫瘤樣本注入晶片後獲得將近50%的分離效率。希望未來能達成將樣本檢體直接注入微流體晶片後,能篩選分離出癌症幹細胞並直接於晶片中進行培養放大,有助於癌症幹細胞自我更新與多重分化的分子調控機制的研究,以及發展個人化癌症幹細胞藥物抗性篩選平台。
Abstract
Cancer cells initially originate from normal cells that obtain the ability to proliferate aberrantly and become malignant. A subpopulation of these malignant cells has many characteristics of normal stem cells, including self-renewal and differentiation. Also these cells have a potential of growing clonally into tumors and express markers of normal stem cells. Thus, these cells called cancer stem cells (CSCs). Tumor progression and recurrence after surgery or chemotherapy are the main reasons for mortality of cancers. On the other hand, the growing evidence shows that the existence of cancer stem cells is the main cause of cancer resistance to therapy, so it is becoming increasingly important to study CSCs. The ability to identify, isolate, propagate and molecularly characterize CSC subpopulations could improve the discovery of cancer stem cell biomarkers and expand the understanding of the molecular mechanisms that regulate self-renewal and differentiation. Confocal microscopy and microfluidic chip are two novel technologies for imaging and isolation of cells respectively. In this study we used confocal microscopy to investigate the expression pattern of several cancer stem cells markers (CD133, CD44 and Claudin-4) in 2-Dimentional and 3-Dimentional models. The scope of this thesis is to investigate the expression pattern of three cancer stem cell markers using cancer stem confocal microscopy. Then we selected the most expressed marker as a target for immunomagnetic-based cell separation by microfluidic chip technology to isolate CSCs among tumor cells. In this study we used HCT-8 colorectal cancer cell line to generate 2-D monolayer cells, 3-D sphere cells. Our chip possesses 500 micropost structures fabricated by photocrosslinking polymerization of polyethylene glycol diacrylate under the exposure of UV light. These microposts contain iron nanoparticles inside of their structure when a piece of strong magnet placed under the chip, a big magnetic force will be induced in the microposts and give them the ability to capture pre-labeled cells. Tumor cells were treated by antibodies against cancer stem cell markers and then magnetic Dynabeads against these antibodies; consequently the cultured cells labeled with magnetic Dynabeads could be isolated by the chip with approximately 50% of efficiency.
References
1.Lobo, N.A., et al., The biology of cancer stem cells. Annu Rev Cell Dev Biol, 2007. 23: p. 675-99.
2.McClay, D.R., Gastrulation. Curr Opin Genet Dev, 1991. 1(2): p. 191-5.
3.Molofsky, A.V., et al., Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 2003. 425(6961): p. 962-7.
4.Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
5.Morrison, S.J. and J. Kimble, Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 2006. 441(7097): p. 1068-74.
6.Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
7.Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005. 65(23): p. 10946-51.
8.Lugli, A., et al., Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer, 2010. 103(3): p. 382-90.
9.Mulder, J.W., et al., Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet, 1994. 344(8935): p. 1470-2.
10.Herrlich, P., S. Pals, and H. Ponta, CD44 in colon cancer. Eur J Cancer, 1995. 31A(7-8): p. 1110-2.
11.Weg-Remers, S., et al., Decreased expression of CD44 splicing variants in advanced colorectal carcinomas. Eur J Cancer, 1998. 34(10): p. 1607-11.
12.O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-10.
13.Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5.
14.Shmelkov, S.V., et al., CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest, 2008. 118(6): p. 2111-20.
15.Morin, P.J., Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res, 2005. 65(21): p. 9603-6.
16.Yin, A.H., et al., AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997. 90(12): p. 5002-12.
17.Weigmann, A., et al., Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12425-30.
18.Maeda, S., et al., CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer, 2008. 98(8): p. 1389-97.
19.Song, W., et al., Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract, 2008. 62(8): p. 1212-8.
20.Cadigan, K.M. and Y.I. Liu, Wnt signaling: complexity at the surface. J Cell Sci, 2006. 119(Pt 3): p. 395-402.
21.Ma, S., et al., CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 2008. 27(12): p. 1749-58.
22.Iczkowski, K.A., Cell adhesion molecule CD44: its functional roles in prostate cancer. Am J Transl Res, 2010. 3(1): p. 1-7.
23.Assimakopoulos, D., et al., The role of CD44 in the development and prognosis of head and neck squamous cell carcinomas. Histol Histopathol, 2002. 17(4): p. 1269-81.
24.Gong, C., et al., Markers of tumor-initiating cells predict chemoresistance in breast cancer. PLoS One, 2010. 5(12): p. e15630.
25.Phillips, T.M., W.H. McBride, and F. Pajonk, The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst, 2006. 98(24): p. 1777-85.
26.Farquhar, M.G. and G.E. Palade, Junctional complexes in various epithelia. J Cell Biol, 1963. 17: p. 375-412.
27.Turksen, K. and T.C. Troy, Junctions gone bad: claudins and loss of the barrier in cancer. Biochim Biophys Acta, 2011. 1: p. 73-9.
28.Furuse, M., et al., Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 1998. 141(7): p. 1539-50.
29.Kominsky, S.L., et al., Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol, 2004. 164(5): p. 1627-33.
30.Long, H., et al., Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res, 2001. 61(21): p. 7878-81.
31.Michl, P., et al., Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res, 2003. 63(19): p. 6265-71.
32.Lal-Nag, M. and P.J. Morin, The claudins. Genome Biol, 2009. 10(8): p. 26.
33.D'Souza, T., F.E. Indig, and P.J. Morin, Phosphorylation of claudin-4 by PKCepsilon regulates tight junction barrier function in ovarian cancer cells. Exp Cell Res, 2007. 313(15): p. 3364-75.
34.Hell, S.W. and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 1994. 19(11): p. 780-782.
35.Cantrill, S., Nobel Prize 2008: Green fluorescent protein. Nat Chem, 2008.
36.Abramowitz2, M.W.D.a.M., <OPTICAL MICROSCOPY.pdf>. 2008.
37.Stephens, D.J. and V.J. Allan, Light microscopy techniques for live cell imaging. Science, 2003. 300(5616): p. 82-6.
38.Caspers, P.J., G.W. Lucassen, and G.J. Puppels, Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J, 2003. 85(1): p. 572-80.
39.Kunz-Schughart, L.A., et al., The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen, 2004. 9(4): p. 273-85.
40.Friedrich, J., et al., Spheroid-based drug screen: considerations and practical approach. Nat Protoc, 2009. 4(3): p. 309-24.
41.Kelm, J.M. and M. Fussenegger, Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol, 2004. 22(4): p. 195-202.
42.Hirschhaeuser, F., et al., Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol, 2010. 148(1): p. 3-15.
43.Lin, R.Z. and H.Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J, 2008. 3(9-10): p. 1172-84.
44.Friedrich, J., R. Ebner, and L.A. Kunz-Schughart, Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol, 2007. 83(11-12): p. 849-71.
45.Korff, T., et al., Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. Faseb J, 2001. 15(2): p. 447-57.
46.Kelm, J.M., et al., VEGF profiling and angiogenesis in human microtissues. J Biotechnol, 2005. 118(2): p. 213-29.
47.Singec, I., et al., Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods, 2006. 3(10): p. 801-6.
48.Reynolds, B.A. and R.L. Rietze, Neural stem cells and neurospheres--re-evaluating the relationship. Nat Methods, 2005. 2(5): p. 333-6.
49.Seaberg, R.M. and D. van der Kooy, Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci, 2002. 22(5): p. 1784-93.
50.Zhang, S.C., D. Lipsitz, and I.D. Duncan, Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J Neurosci Res, 1998. 54(2): p. 181-90.
51.Tropepe, V., et al., Retinal stem cells in the adult mammalian eye. Science, 2000. 287(5460): p. 2032-6.
52.Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-9.
53.Cho, S.H., et al., Micro-fabricated fluorescence-activated cell sorter. Conf Proc IEEE Eng Med Biol Soc, 2009. 8: p. 1075-8.
54.Davis, J.A., et al., Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci U S A, 2006. 103(40): p. 14779-84.
55.Huang, L.R., et al., Continuous particle separation through deterministic lateral displacement. Science, 2004. 304(5673): p. 987-90.
56.Chang, W.C., L.P. Lee, and D. Liepmann, Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip, 2005. 5(1): p. 64-73.
57.Sim, T.S., et al., Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab on a Chip, 2011. 11(1): p. 93-99.
58.Wong Cheng Lee1, Ali Asgar. S. Bhagat1, Sha Huang3, Krystyn J. Van Vliet1,4,5, Jongyoon Han1,3,5, and Chwee Teck Lim1, 6,7, <CELL CYCLE SYNCHRONIZATION OF STEM CELLS USING INERTIAL
MICROFLUIDICS.pdf>. 2010.
59.Xu, H., et al., Carbon post-microarrays for glucose sensors. Biosens Bioelectron, 2008. 23(11): p. 1637-44.
60.engineering, E.a.C., <FLEXIBLE MICROPOST ARRAYS FOR STUDYING TRACTION.pdf>. 2010.
61.Hwang, C.M., et al., Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication, 2010. 2(4): p. 24.