研究生: |
李旻翰 Lee, Min-Han |
---|---|
論文名稱: |
結合多重嵌套循環同位檢查之極性碼的接續消去名單解碼法 Successive Cancellation List Decoding of Polar Codes with Multiple Nested Cyclic Redundancy Checks |
指導教授: |
呂忠津
Lu, Chung-Chin |
口試委員: |
蘇育德
Su, Yu-Ted 蘇賜麟 Su, Szu-Lin 林茂昭 Lin, Mao-Chao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 極性碼 、接續消去名單解碼法 、嵌套循環同位檢查 、多重嵌套循環同位檢查 、循環同位檢查 、極化碼 |
外文關鍵詞: | Nested Cyclic Redundancy Checks, Multiple Nested Cyclic Redundancy Checks, Cyclic Redundancy Checks |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文,我們應用多重嵌套循環同位檢查(multiple nested cyclic redundancy checks)於極性碼(polar codes)的接續消去名單解碼法(successive cancellation list decoding)上。與文獻上不同的地方是,文獻是使用單一個循環同位檢查。
此方法是將一個來源端的位元區塊分割成數個部分,每個部分各以嵌套的方式來計算一個循環同位檢查,再將來源端的位元區塊(source bits)與所產生的數個嵌套循環同位檢查當成極性碼編碼器的訊息位元﹙information bits﹚,去產生極性碼的碼字(codeword)。
碼字經過通道後,被結合多重嵌套循環同位檢查之極性碼的接續消去名單解碼器接收到,解碼器就先開始運作接續消去名單解碼法,直到其中一部分來源端的位元與嵌套循環同位檢查位元被估測出來後,就用嵌套循環同位檢查,來判斷哪個被估測的部分碼字會被留在名單中。在名單中,若有通過嵌套循環同位檢查的被估測部分碼字,就都會被留下,而若全部在名單中的被估測部分碼字都沒通過嵌套循環同位檢查,則會將所有名單中的被估測部分碼字留下,但若在名單中至少有一個通過嵌套循環同位檢查的被估測部分碼字,則沒通過嵌套循環同位檢查的被估測部分碼字,就都會被捨棄。利用上述所提的解碼方法依序去解碼每個部分,而在最後一個部分時,會再從留在名單中裡的被估測碼字選擇擁有最高機率的,而該決定就是此次結合多重嵌套循環同位檢查之極性碼的接續消去名單解碼器所得的被估測碼字,之後將估測出的極性碼之訊息位元取出,接著使用多重嵌套循環同位檢查解碼法,去得到估測的來源端之位元。
模擬結果顯示出,極性碼的接續消去名單解碼法結合多重嵌套循環同位檢查通常比極性碼的接續消去名單解碼法結合單一個循環同位檢查的效果好。
In this thesis, we use multiple nested CRCs in the successive cancellation list decoding (SCLD) of polar codes instead of one single CRC in the literature.
The method is to divide the source bits in one block into multiple parts, where each part adds one nested CRC. And all those bits, including source bits and check bits, become the information bits of polar codes to be encoded into a codeword. After the transmitter transmits the codeword, the receiver will use successive cancellation list decoding with multiple nested CRCs to decode the word.
Simulation results show that multiple nested CRCs generally outperform a single CRC in the successive cancellation list decoding of polar codes.
[1] E. Arikan, “Channel polarization: A method for constructing capacityachieving
codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
[2] I. Tal and A. Vardy, “List decoding of polar codes,” in 2011 IEEE International
Symposium on Information Theory Proceedings (ISIT), July 2011, pp. 1–5.
[3] ——, “List decoding of polar codes,” IEEE Transactions on Information Theory,
vol. 61, no. 5, pp. 2213–2226, May 2015.
[4] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Communications
Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.
[5] T. Mattes, F. Schiller, A. Morwald, J. Pfahler, and T. Honold, “Safety proof
of combinations of CRC for industrial communication,” Journal of Applied
Computer Science, vol. Vol. 16, nr 1, pp. 15–32, 2008.
[6] S.-Y. Lin, “A simple method for constructing polar codes,” Master Thesis,
National Tsing Hua University, 2014.
[7] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial
selection for embedded networks,” in 2004 International Conference on
Dependable Systems and Networks, June 2004, pp. 145–154.
[8] P. Koopman, “Best CRC polynomials,” [Online]. Available:
http://users.ece.cmu.edu/ koopman/crc/.