簡易檢索 / 詳目顯示

研究生: 蕭佩琪
Hsiao, Pei-Chi
論文名稱: 以區塊為基礎的影像去雜訊研究
A Study on Patch-Based Image Denoising Methods
指導教授: 張隆紋
Chang, Long-Wen
口試委員: 廖弘源
張寶基
陳朝欽
賴尚宏
陳煥宗
張隆紋
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 97
中文關鍵詞: 聯盟賽局優勢集合非局部均化影像去雜訊成對資料分群主成分分析機率模型聚合式分群
外文關鍵詞: coalitional games, dominant sets, nonlocal means, image denoising, pairwise data clustering, principal component analysis, probability model, agglomerative clustering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然影像可視為由一群富含資訊的影像區塊所構成,在本論文裡,我們利用相似紋理特徵的影像區塊們進行去雜訊研究。近年來,非局部均化的去雜訊方法受到了很多重視,它是透過鄰近像素點的加權平均來得到去雜訊後的估測值,其中權重的決定方式是根據影像區塊間的相似度。我們提出以影像區塊的相似度為基礎進行像素點分群,從鄰近像素點篩選出相似的子集合進行均化,使之能達到最佳的去雜訊效果並同時保留影像細節。我們設計一聯盟賽局模型來解分群問題,將每一雜訊像素視為玩家,以影像區塊間的相似度作為倆倆玩家彼此合作的報償,經由我們所提出的背叛與孤立規則,每個玩家可以經由參與不同的聯盟來提高自身的獲利,在這樣的機制下,我們可以獲得最佳與穩定的聯盟,而其中的玩家們彼此具有高度的相似度,將其用於非局部均化以去除雜訊。另外,我們也提出頻率域去雜訊的方法,讓去雜訊影像在輪廓線條有較佳的表現。我們首先將雜訊影像分割成重疊的影像區塊,再透過聚合式分群影像區塊們,再者,我們利用機率主成分分析每一群雜訊的影像區塊,並估測去雜訊後的影像區塊以重建影像。藉由廣泛的實驗,我們證明所提出的兩種去雜訊方法能有效地達到影像恢復的目的。


    Image patches are considered as the fundamental building blocks of an image. In this dissertation, the restoration of a noisy image based on its redundant patches is studied. Nonlocal means (NLM) is known as a weighted average filtering based on patch similarity. We propose to improve NLM by only including a cluster of pixels with mutually similar patch appearances to that of the pixel to be denoised. A coalitional game model is designed to find an optimal cluster of pixels for every noisy pixel. In the coalitional game model, each pixel is treated as a player and each player receives a payoff which depends on the mutuality among players in the same group. Therefore, pixels with similar patch appearances are prone to group together for cooperation. We propose betrayal and hermit rules to describe the cooperative behaviors among the players and apply it to find the optimal and stable group of pixels for the denoising purpose. In addition, stability analysis of our coalitional game model is given. Besides, we propose an alternative patch-based approach, which suppresses the image noise by shrinkage of coefficients in transform domain. We first sample overlapped patches from the noisy image and then cluster them into many similar groups. For every group of noisy patches, we apply probabilistic principal component analysis (PPCA) to denoised jointly in the learnt PCA domain. Putting back the denoised patches to their original positions, the denoised image is then reconstructed. Our two patch-based denoising approaches are shown to be effective in removing the image noise while maintaining the edge structures of the original noise-free images. The superior performances are shown by both visual and quantitative qualities.

    摘要 ix Abstract xi List of Figures xvii List of Tables xxiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Adaptive Nonlocal Means Filter . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Clustering Using Cooperative Game . . . . . . . . . . . . . . . . . . . . . .4 1.2.3 Transform-Domain Coefficient Shrinkage . . . . . . . . . . . . . . . . . . . 5 1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2 Background 9 2.1 Adaptive Nonlocal Means Filter . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Coalition Formation Games . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Transform-Domain Coefficient Shrinkage . . . . . . . . . . . . . . . . . . . .17 3 Dominant Sets in Coalitional Game 21 3.1 Introduction to Graph Partition . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Coalitional Games for Graph Partition . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Dominant Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 General Coalitional Game . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.2.3 Coalitional Subgame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Stability of Coalitional Games . . . . . . . . . . . . . . . . . . . . . . . .36 4 Image Denoising with Dominant Sets by a Coalitional Game Approach 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 4.2 Dominant-Set-Expansion Algorithm . . . . . . . . . . . . . . . . . . . . . . .43 4.3 Texture Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 Image Denoising with Dominant Sets . . . . . . . . . . . . . . . . . . . . . .47 4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 5 Transform-Domain Patch-Based Image Denoising Using Probabilistic Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 5.2 Denoising Algorithm of Patch Clustering and Collaborative Filtering . . . . . 62 5.2.1 Noisy Patch Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . .63 5.2.2 PPCA-Based Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . .64 5.2.3 Dynamic Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . .66 5.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 LMMSE-Based Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 6 Conclusion 81 A Deriving Linear Minimum Mean Square-Error (LMMSE) Estimator 83 B Graph Partition in Figure 3.3 85 Bibliography 87 Publications 95

    [1] M. O. Afacan. Group robust stability in matching markets. Games and Economic Behavior, 74(1):394–398, 2012.
    [2] M. Aharon, M. Elad, and A. M. Bruckstein. The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.
    [3] K. R. Apt and A. Witzel. A generic approach to coalition formation. International Game Theory Review, 11(03):347–367, 2009.
    [4] P. Arias, V. Caselles, and G. Sapiro. A variational framework for non-local image inpainting. In Proceedings of the 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 345–358, 2009.
    [5] R. J. Aumann and J. H. Dreze. Cooperative games with coalition structures. International Journal of Game Theory, 3(4):217–237, 1974.
    [6] C. Ballester. Np-completeness in hedonic games. Games and Economic Behavior, 49(1):1–30, 2004.
    [7] S. Banerjee, H. Konishi, and T. Sonmez. Core in a simple coalition formation game. Social Choice and Welfare, 18:135–153, 2001.
    [8] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
    [9] A. Bogomolnaia and M. O. Jackson. The stability of hedonic coalition structures. Games and Economic Behavior, 38(2):201–230, 2002.
    [10] S. Branzei and K. Larson. Social distance games. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pages 91–96, 2011.
    [11] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In IEEE International Conference on Computer Vision and Pattern Recognition, pages 60–65, 2005.
    [12] A. Buades, B. Coll, and J.-M. Morel. Nonlocal image and movie denoising. International Journal of Computer Vision, 76:123–139, 2008.
    [13] A. Buades, B. Coll, and J.-M. Morel. Non-local means denoising. Image Processing On Line, 2011.
    [14] K. Cechlarova and A. Romero-Medina. Stability in coalition formation games. International Journal of Game Theory, 29:487–494, 2001.
    [15] T. Chan and J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. Society for Industrial and Applied Mathematics, 2005.
    [16] S. G. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing, 9(9):1522–1531, 2000.
    [17] Y. Chen and K. J. R. Liu. A game theoretical approach for image denoising. In IEEE International Conference on Image Processing, pages 1125–1128, 2010.
    [18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007.
    [19] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d image denoising with shape-adaptive principal component analysis. In Workshop on Signal Processing with Adaptive Sparse Structured Representations, Saint Malo, France, 2009.
    [20] D. L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613–627, 1995.
    [21] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive dct for highquality denoising and deblocking of grayscale and color images. IEEE Transactions on Image Processing, 16(5):1395–1411, 2007.
    [22] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9–15, 1962.
    [23] Z. Han and H.V. Poor. Coalition games with cooperative transmission: a cure for the curse of boundary nodes in selfish packet-forwarding wireless networks. IEEE Transactions on Communications, 57(1):203–213, Jan. 2009.
    [24] Z. Han, Z. Ji, and K. J. R. Liu. Fair multiuser channel allocation for ofdma networks using nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8):1366–1376, 2005.
    [25] M. O. Jackson and A. Watts. Social games: Matching and the play of finitely repeated games. Games and Economic Behavior, 70(1):170–191, 2010.
    [26] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.
    [27] Z. Ji, Q. Chen, Q.-S. Sun, and D.-S. Xia. A moment-based nonlocal-means algorithm for image denoising. Information Processing Letters, 109(23-24):1238–1244, 2009.
    [28] I. M. Johnstone and B.W. Silverman. Wavelet threshold estimators for data with correlated noise. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(2):319–351, 1997.
    [29] C. Kervrann and J. Boulanger. Optimal spatial adaptation for patch-based image denoising. IEEE Transactions on Image Processing, 15(10):2866–2878, 2006.
    [30] X. Li and M. T. Orchard. Spatially adaptive image denoising under overcomplete expansion. In IEEE International Conference on Image Processing, volume 3, pages 300–303, 2000.
    [31] C. Liu and W. T. Freeman. A high-quality video denoising algorithm based on reliable motion estimation. In European Conference on Computer Vision, pages 706–719, 2010.
    [32] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise estimation from a single image. In IEEE International Conference on Computer Vision and Pattern Recognition, pages 901–908, 2006.
    [33] J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and J. Neyman, editors, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297. University of California Press, Berkeley, CA, USA, 1967.
    [34] S. Mathur, L. Sankar, and N. B. Mandayam. Coalitions in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 26(7):1104–1115, 2008.
    [35] D. D. Muresan and T. W. Parks. Adaptive principal components and image denoising. In IEEE International Conference on Image Processing, volume 1, pages 101–104, 2003.
    [36] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge University Press, New York, NY, USA, 2007.
    [37] M. Nowak and R. Highfield. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. Free Press, 2011.
    [38] M. A. Nowak. Five rules for the evolution of cooperation. Science, 314(5805):1560–1563, 2006.
    [39] M. J. Osborne. An introduction to game theory. Oxford University Press, 2009.
    [40] M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1):167–172, 2007.
    [41] M. Protter, M. Elad, H. Takeda, and P. Milanfar. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 18(1):36–51, 2009.
    [42] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar. Coalitional game theory for communication networks. IEEE Signal Processing Magazine, 26(5):77–97, 2009.
    [43] U. Sakarya and Z. Telatar. Video scene detection using dominant sets. In IEEE International Conference on Image Processing, pages 73–76, 2008.
    [44] H. E. Scarf. The core of an n person game. Econometrica, 35(1):50–69, 1967.
    [45] J. Sun, N.-N. Zheng, H. Tao, and H.-Y. Shum. Image hallucination with primal sketch priors. In IEEE International Conference on Computer Vision and Pattern Recognition, volume 2, pages 729–736, 2003.
    [46] T. Tasdizen. Principal neighborhood dictionaries for nonlocal means image denoising. IEEE Transactions on Image Processing, 18(12):2649–2660, 2009.
    [47] T. Thaipanich, B. T. Oh, P.-H. Wu, D. Xu, and C.-C. J. Kuo. Improved image denoising with adaptive nonlocal means (anl-means) algorithm. IEEE Transactions on Consumer Electronics, 56(4):2623–2630, 2010.
    [48] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B(61)(3):611–622, 1999.
    [49] A. Torsello, M. Pavan, and M. Pelillo. Spatio-temporal segmentation using dominant sets. Lecture Notes in Computer Science, 3757:301–315, 2005.
    [50] A. Traulsen and M. A. Nowak. Evolution of cooperation by multilevel selection. Proceedings of the National Academy of Sciences of the United States of America, 103(29):10952–10955, 2006.
    [51] M. Wang, Z.-L. Ye, Y. Wang, and S.-X. Wang. Fast communication: Dominant sets clustering for image retrieval. Signal Processing, 88(11):2843–2849, 2008.
    [52] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
    [53] X. Yang, H. Liu, and L. J. Latecki. Contour-based object detection as dominant set computation. In Asian Conference on Computer Vision, 2010.
    [54] L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43:1531–1549, 2010.
    [55] S. Zimmer, S. Didas, and J. Weickert. A rotationally invariant block matching strategy improving image denoising with non-local means. In International Workshop on Local and Non-Local Approximation in Image Processing, 2008.
    [56] M. Zontak and M. Irani. Internal statistics of a single natural image. In IEEE International Conference on Computer Vision and Pattern Recognition, pages 977–984, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE