研究生: |
邱旭鋒 Chiu, Hsu-Feng |
---|---|
論文名稱: |
具有High-k/Metal-Gate的n型電晶體在28奈米製程下之雜訊研究 Noise Analysis on 28 nm High-k/Metal-Gate nMOSFETs |
指導教授: |
張一熙
Chang, Yee-Shyi 吳三連 Wu, San-Lein |
口試委員: |
張守進
Chang, Shoou-Jinn 陳志方 Chen, Jone-Fang 黃柏仁 Huang, Bohr-ran 利定東 Li, Ting-Tung 柯誌欣 Ko, Chih-Hsin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 雜訊分析 |
外文關鍵詞: | Noise Analysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們主要利用低頻雜訊及隨機電報雜訊的理論來研究退火製程對電子型通道金氧半場發電晶體的缺陷特性影響,進而對缺陷做定性及定量的研究分析。在實驗製作方面,為了了解電子捕捉行為及不同的退火程序之間的關係,分別在介電層上的第二層金屬(氮化鉭)鍍膜前及鍍膜後的元件上,以低溫且含氧的氣氛下進行退火。而在移除多晶矽的閘極犧牲層後,沒有進行退火製程的元件,則是用以做為對照組。
In this research, trap quantitative and qualitative properties in n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with different annealing sequences have been studied on the basis of low-frequency (1/f) noise and random telegraph noise (RTN) analyses. To realize the relation between electron-trapping behavior and annealing processes, the rapid thermal annealing (RTA) procedure at 400 ℃ in oxygen ambient was utilized in the procedure before the tantalum nitride (TaN) layer or after the TaN layer. For comparison, the control samples were fabricated without the RTA procedure.
References
Chapter 1
[1.1] http://news.cnet.com/2300-11386_3-10013859-12.html
[1.2] C. P. Chen, “Ultrathin Gate Oxide Integrity for TiN-Gated MOS Capacitors,” M. A. thesis, Fengchia Univ., Taichung, 2002.
[1.3] http://tc.wangchao.net.cn/baike/detail_1577395.html
[1.4] S. M. Rossnagel, and D. Mikalsen, H. Kinoshita, and J. J. Cuomo, “Collimated Magnetron Sputter Deposition,” J. Vac. Sci. Technol. A 9, 261-265 (1991).
[1.5] T. Sakurai, “Closed-Form Expressions for Interconnection Delay, Coupling, and Crosstalk in VLSIs,” IEEE Trans. Electron Device 40, 118-124 (1993).
[1.6] T. Schroeder, T.-L. Lee, J. Zegenhagen, C. Wenger, P. Zaumseil, and H.-J. Mussig, “Structure and Thickness-Dependent Lattice Parameters of Ultrathin Epitaxial Pr2O3 Films on Si(001),” Appl. Phys. Lett. 85, 1229-1231 (2004).
[1.7] B. H. Lee, S. C. Song, R. Choi, and P. Kirsc, “Metal Electrode/High-k Dielectric Gate-Stack Technology for Power Management,” IEEE Trans. Electron Devices 55, 8-20 (2008).
[1.8] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks , R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," IEDM 2007, 247-250.
[1.9] K. Henson, H. Bu, M. H. Na, Y. Liang, U. Kwon, S. Krishnan, J. Schaeffera, R. Jha, N. Moumen, R. Carterb, C. DeWan, R. Donaton, D. Guo, M. Hargroveb, W. He, R. Mo, R. Ramachandran, K. Ramanib, K. Schonenberg, Y. Tsangb, X. Wang, M. Gribelyuk, W. Yan, J. Shepard, E. Cartierc, M. Frankc, E. Harley, R. Arndt, R. Knarr, T. Bailey, B. Zhang, K. Wong, T. Graves-Abe, E. Luckowskia, D-G. Parkc, V. Narayananc, M. Chudzik, M. Khare, "Gate Length Scaling and High Drive Currents Enabled for High Performance SOI Technology using High-k/Metal Gate," IEDM 2008, 645-648.
[1.10] S. Yaegashi, T. Kurihara, H. Hoshi, and H. Segawa, “Epitaxial Growth of CeO2 Films on Si(111) by Sputtering,” Jpn. J. Appl. Phys. 33, 270-274 (1994).
[1.11] S. A. Campbell, D. C. Gilmer, X.-C. Wang, M.-T. Hsieh, H.-S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET Transistors Fabricated with High Permittivity TiO2 Dielectrics,” IEEE Trans. Electron Devices 44, 104-109 (1997).
[1.12] G. Efkekhari, “Electrical Characteristics of Ta2O5 Films on Si Prepared by DC Magnetron Reactive Sputtering and Annealed Rapidly in N2O,” J. Vac. Sci. Technol. B 16, 2115-2117 (1998).
[1.13] H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Roberts, and D. L. Kwong, “Ultra Thin High Quality Ta2O5 Gate Dielectric Prepared by In-situ Rapid Thermal Processing,” IEDM 1998, 609-612.
[1.14] B. Ho, T. Ma, S. A. Campbell, and W. L. Gladfelter, “A 1.1nm Oxide Equivalent Gate Insulator Formed using TiO2 on Nitrided Silicon,” IEDM 1998, 1038-1040.
[1.15] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C.-C. Cheng, S. P. Tay, T.-J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett. 19, 341-342 (1998).
[1.16] B. H. Lee, Y. Jeon, K. Zawadzki, W.-J. Qi, and J. Lee, “Effect of Interfacial Layer Growth on the Electrical Characteristics of Thin Titanium Oxide Films on Silicon,” Appl. Phys. Lett. 74, 3143-3145 (1999).
[1.17] L. Machanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch, and G. R. Weber, “Gate Quality Doped High-k Films for CMOS beyond 100nm: 3–10nm Al2O3 with Low Leakage and Low Interface States,” IEDM 1998, 605-608.
[1.18] B. H. Lee, “Technology Development and Process Integration of Alternative Gate Dielectric Material: Hafnium Oxide,” Ph.D. dissertation, Texas Univ., Austin, 2000.
[1.19] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Mater. Res. 11, 2757-2776 (1996).
[1.20] J. Robertson, “Band Offsets of Wide-Band-Gap Oxides and Implications for Future Electronic Devices,” J. Vac. Sci. Technol. B 18, 1785-1791 (2000).
[1.21] P. M. Gammon, A. Perez-Tomas, M. R. Jennings, O. J. Guy, N. Rimmer, J. Llobet, N. Mestres, P. Godignon, M. Placidi, M. Zabala, J. A. Covington, and P. A. Mawby, “Integration of HfO2 on Si/SiC Heterojunctions for the Gate Architecture of SiC Power Devices”, Appl. Phys. Lett. 97, 013506-1-3 (2010).
[1.22] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Maes, and U. Schwalke, “Origin of the Threshold Voltage Instability in SiO2/HfO2 Dual Layer Gate Dielectrics,” IEEE Electron Device Lett. 24, 87-89 (2003).
[1.23] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A. Krishnan, M. S. Akbar, and J. C. Lee, “Bias-Temperature Instabilities of Polysilicon Gate HfO2 MOSFETs,” IEEE Trans. Electron Devices 50, 1517-1524 (2003).
[1.24] F. Crupi, C. Pace, G. Cocorullo, G. Groeseneken, M. Aoulaiche, and M. Houssa, “PBTI in nMOSFETs with Ultra-Thin Hf-Silicate Gate Dielectrics,” Microelectron. Eng. 80, 130-133 (2005).
[1.25] Z. Ren, M. V. Fischetti, E. P. Gusev, E. A. Cartier, and M. Chudzik,“Inversion Channel Mobility in High-k High Performance MOSFETs,” IEDM 2003, 793-796.
[1.26] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken,“Correlation between Stress-Induced Leakage Current (SILC) and the HFO2 Bulk Trap density in a SiO2/HfO2 Stack,” IRPS 2004, 181-187.
[1.27] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. Qi, C. Kang, and J. C. Lee, “Characteristics of TaN Gate MOSFET with Ultrathin Hafnium Oxide (8 Å–12 Å),” IEDM 2000, 39-42.
[1.28] T. Suntola, and J. Antson, “Matched Particle/Liquid Density Well Packing Technique,” U.S. Patent 4850430, 1977.
[1.29] J. Robertson, "High Dielectric Constant Oxides", Eur. J. Appl. Phys. 28, 265-291 (2004).
[1.30] http://large.stanford.edu/courses/2007/ap272/kimej1/
[1.31] F. Lee, S. Marcus, E. Shero, G. Wilk, J. Swerts, J. W. Maes, T. Blomberg, A. Delabie, M. Gros-Jean, and E. Deloffre, “Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing,” ASMC 2007, 359-365.
[1.32] M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, and M. Grassbauer, “Surface Roughness Reduction in Atomic Layer Epitaxy Growth of Titanium Dioxide Thin Films,” Thin Solid Films 249, 155-162 (1994).
[1.33] M. Copel, M. Gribelyuk, and E. Gusev, “Structure and Stability of Ultrathin Zirconium Oxide Layers on Si(001),” Appl. Phys. Lett. 76, 436-438 (2000).
[1.34] C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, S. Haukka, and M. Tuominen, “Electrical and Materials Properties of ZrO2 Gate Dielectrics Grown by Atomic Layer Chemical Vapor Deposition,” Appl. Phys. Lett. 78, 2357-2359 (2001)
[1.35] R. C. Smith, T. Ma, N. Hoilien, L. Y. Tsung, M. J. Bevan, L. Colombo, J. Roberts, S. A. Campbell, and W. L. Gladfelter, “Chemical Vapour Deposition of the Oxides of Titanium, Zirconium and Hafnium for Use as High-k Materials in Microelectronic Devices. A Carbon-free Precursor for the Synthesis of Hafnium Dioxide,” Adv. Mater. Opt. Electron. 10, 105-114 (2000).
[1.36] D. G. Colombo, D. C. Gilmer, V. G. Young, S. A. Campbell, and W. L. Gladfelter, “Anhydrous Metal Nitrates as Volatile Single Source Precursors for the CVD of Metal Oxide Films,” Chem. Vap. Deposition 4, 220-222 (1998).
[1.37] J. F. Conley, Jr., Y. Ono, D. J. Tweet, W. Zhuang, M. Khaiser, and R. Solank, “Preliminary Investigation of Hafnium Oxide Deposited via Atomic Layer Chemical Vapor Deposition (ALCVD),” IRW 2011, 11-14.
[1.38] http://www.electroiq.com/articles/sst/2010/03/integrating-high-k.html
[1.39] P. Ranad, T. Ghani, K. Kuhn, K. Mistry, S. Pae, L. Shifren, M. Stettler, K. Tone, S. Tyagi, and M. Bohr, "High Performance 35nm LGATE CMOS Transistors Featuring NiSi Metal Gate (FUSI), Uniaxial Strained Silicon Channels and 1.2nm Gate Oxide," IEDM 2005, 217-220.
[1.40] L.-Å. Ragnarsson, Z. Li, J. Tseng, T. Schram, E. Rohr, M. J. Cho, T. Kauerauf, T. Conard, Y. Okuno, B. Parvais, P. Absil, S. Biesemans, and T. Y. Hoffman, "Ultra Low-EOT (5Å) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization," IEDM 2009, 663-666.
[1.41] F. Arnaud, J. Liu, Y. M. Lee, K. Y. Lim, S. Kohler, J. Chen, B. K. Moon, C. W. Lai, M. Lipinski, L. Sang, F. Guarin, C. Hobbs, P. Ferreira, K. Ohuchi, J. Li, H. Zhuang, P. Mora, Q. Zhang, D. R. Nair, D. H. Lee, K. K. Chan, S. Satadru, S. Yang, J. Koshy, W. Hayter, M. Zaleski, D. V. Coolbaugh, H. W. Kim, Y. C. Ee, J. Sudijono, A. Thean, M. Sherony, S. Samavedam, M. Khare, C. Goldberg, and A. Steegen, "32nm General Purpose Bulk CMOS Technology for High Performance Applications at Low Voltage," IEDM 2008, 633-636.
[1.42] T. Tomimatsu, Y. Goto, H. Kato, M. Amma, M. Igarashi, Y. Kusakabe, M. Takeuchi, S. Ohbayashi, S. Sakashita, T. Kawahara, M. Mizutani, M. Inoue, M. Sawada, Y. Kawasaki, S. Yamanari, Y. Miyagawa, Y. Takeshima, Y. Yamamoto, S. Endo, T. Hayashi, Y. Nishida, K. Horita, T. Yamashita, H. Oda, K. Tsukamoto, and Y. Inoue, "Cost-Effective 28nm LSTP CMOS Using Gate-First Metal Gate/High-k Technology," VLSI 2009, 36-37.
[1.43] K. Choi, H. Jagannathan, C. Choi, L. Edge, T. Ando, M. Frank, P. Jamison, M. Wang, E. Cartier, S. Zafar, J. Bruley, A. Kerber, B. Linder, A. Callegari, Q. Yang, S. Brown, J. Stathis, J. Iacoponi, V. Paruchuri, and V. Narayanan, "Extremely Scaled Gate-First High-k/Metal Gate Stack with EOT of 0.55nm Using Novel Interfacial Layer Scavenging Techniques for 22nm Technology Node and Beyond," VLSI 2009, 138-139.
[1.44] C. M. Lai, C. T. Lin, L. W. Cheng, C. H. Hsu, J. T. Tseng, T. F. Chiang, C. H. Chou, Y. W. Chen, C. H. Yu, S. H. Hsu, C. G. Chen, Z. C. Lee, J. F. Lin, C. L. Yang, G. H. Ma, and S. C. Chien, "A Novel Hybrid High-k/Metal Gate Process for 28nm High Performance CMOSFETs," IEDM 2009, 655-658.
Chapter 2
[2.1] M. von Haartman, and M. Östling, “Low-Frequency Noise in Advanced MOS Devices,” Springer, London, 2007.
[2.2] A. Van Der Ziel, “Noise in Measurements,” John Wiley & Sons, New York, 1976.
[2.3] M. von Haartman, “Low-Frequency Noise Characterization, Evaluation and Modeling of Advanced Si- and SiGe-based CMOS Transistors,” Ph.D. dissertation, Royal Inst. Technol. (KTH), Stockholm, 2006.
[2.4] A. van der Ziel, “Noise in Solid State Devices and Circuits,” John Wiley & Sons, New York, 1986.
[2.5] J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97-109 (1928).
[2.6] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32, 110-113 (1928).
[2.7] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern,” Ann. Phys. 57, 541-567 (1918).
[2.8] http://brahms.iet.unipi.it/elan/vandamme.pdf
[2.9] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Maes, and U. Schwalke, “Origin of the Threshold Voltage Instability in SiO2/HfO2 Dual Layer Gate Dielectrics,” IEEE Electron Device Lett. 24, 87-89 (2003).
[2.10] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken,“Correlation between Stress-Induced Leakage Current (SILC) and the HFO2 Bulk Trap Density in a SIO2/HFO2 Stack,” IRPS 2004, 181-187.
[2.11] D. Felnhofer, E. P. Gusev, P. Jamison, and D. A. Buchanan, “Charge Trapping and Detrapping in HfO2 High-k MOS Capacitors Using Internal Photoemission,” Microelectron. Eng. 80, 58-61 (2005).
[2.12] E. Simoen, A. Mercha, L. Pantisano, C. Claeys, and E. Young,“Low-Frequency Noise Behavior of SiO2-HfO2 Dual-Layer Gate Dielectric nMOSFETs with Different Interfacial Thickness,” IEEE Trans. Electron Devices 51, 780-784 (2004).
[2.13] P. Srinivasan, E. Simoen, L. Pantisano, C. Claeys, and D. Misra, “Impact of High-k Gate Stack Material with Metal Gates on LF Noise in n- and p-MOSFETs,” Microelectron. Eng. 80, 226-229 (2005).
[2.14] B. Min, S. P. Devireddy, Z. Çelik-Butler, F. Wang, A. Zlotnicka, H.-H. Tseng, and P. J. Tobin, “Low-Frequency Noise in Submicrometer MOSFETs with HfO2, HfO2/Al2O3 and HfAlOx Gate Stacks,” IEEE Trans. Electron Devices 51, 1679-1687 (2004).
[2.15] E. Simoen and C. Claeys, “On the flicker noise in submicron silicon MOSFETs,” Solid-State Electron. 43, 865-882 (1999).
[2.16] R. Jayaraman and C. G. Sodini, “1/f Noise Interpretation of the Effect of Gate Oxide Nitridation and Reoxidation on Dielectric Traps,” IEEE Trans. Electron Devices 37, 305-309 (1990).
[2.17] D. Veksler, G. Bersuker, H. Madan, L. Vandelli, M. Minakais, K. Matthews, C. D. Young, S. Datta, C. Hobbs and P. D. Kirsch, “Multi-Technique Study of Defect Generation in High-k Gate Stacks,” IRPS 2012, 5D.2.1-5D.2.5.
Chapter 3
[3.1] M. von Haartman, and M. Östling, “Low-Frequency Noise in Advanced MOS Devices,” Springer, London, 2007.
[3.2] S. Machlup, “Noise in Semiconductors: Spectrum of a Two-Parameter Random Signal,” J. Appl. Phys. 25, 341-343 (1954).
[3.3] A. Ohata, A. Toriumi, et al. "Observation of random telegraph signals: Anomalous nature of defects at the Si/SiO2 interface," J. Appl. Phys. 68, 200-204 (1990).
[3.4] N. Tega, H. Miki, F. Pagette, D. J. Frank, A. Ray, M. J. Rooks, W. Haensch, and K. Torii, “Increasing Threshold Voltage Variation due to Random Telegraph Noise in FETs as Gate Lengths Scale to 20nm,” VLSI 2009, 50-51.
[3.5] J. Nishimura, T. Saraya, and T. Hiramoto, “Statistical Comparison of Random Telegraph Noise (RTN) in Bulk and Fully Depleted SOI MOSFETs,” ULIS 2011, 1-4.
[3.6] K. Fukuda, Y. Shimizu, K. Amemiya, M. Kamoshida, and C. Hu, “Random Telegraph Noise in Flash Memories - Model and Technology Scaling,” IEDM 2007, 169-172.
[3.7] R. Degraeve, T. Kauerauf, A. Kerber, E. Cartier, B. Govoreanu, P. Roussel, L. Pantisano, P. Blomme, B. Kaczer, and G. Groeseneken, “Stress Polarity Dependence of Degradation and Breakdown of SiO2/High-k Stacks,” IRPS 2003, 23-28.
[3.8] W. Y. Loh, B. J. Cho, M. S. Joo, M. F. Li, D. S. Chan, S. Mathew, and D.-L. Kwong, “Analysis of Charge Trapping and Breakdown Mechanism in High-k Dielectrics with Metal Gate Electrode Using Carrier Separation,” IEDM 2003, 927-930.
[3.9] T. P. Ma, H. M. Bu, X. W. Wang, L. Y. Song, W. He, and M. M. Wang, “Special Reliability Features for Hf-based High-k Gate Dielectrics,” IEEE Trans. Device Mater. Rel. 5, 36-44 (2004).
[3.10] T. Kauerauf, B. Govoreanu, R. Degraeve, G. Groeseneken, and H. Maes,“Scaling CMOS: Finding the Gate Stack with the Lowest Leakage Current,” Solid-State Electron. 49, 695-701 (2005).
[3.11] B. Sen, C. K. Sarkar, H. Wong, M. Chan, and C. W. Kok, “Electrical Characteristics of High-k Dielectric Film Grown by Direct Sputtering Method,” Solid-State Electron. 50, 237-240 (2006).
[3.12] X. Wang, J. Peterson, P. Majhi, M. I. Gardner, and D.-L. Kwong, “Impacts of Gate Electrode Materials on Threshold Voltage (Vth) Instability in nMOS HfO2 Gate Stacks under DC and AC Stressing,” IEEE Electron Device Lett. 26, 553-556 (2005).
[3.13] A. S. Foster, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and Interstitial Defects in Hafnia,” Phys. Rev. B 65, 174117-1-13 (2002).
[3.14] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys. 89, 5243-5275 (2001).
[3.15] R. G. Southwick III and W. B. Knowlton, “Stacked Dual-Oxide MOS Energy Band Diagram Visual Representation Program,” IEEE Trans. Device Mater. Reliab. 6, 136-145 (2006).
[3.16] L. D. Yau, and C.-T. Sah "Theory and Experiments of Low-Frequency Generation-Recombination Noise in MOS Transistors," IEEE Trans. Electron Devices 16, 170-177 (1969).
[3.17] S. Ramo, “Currents Induced by Electron Motion,” IRE 27, 584-585 (1939).
[3.18] G. Cavalleri, E. Gatti, G. Fabbri, and V. Svelto, “Extension of Ramo's Theorem as Applied to Induced Charge in Semiconductor Detectors,” Nucl. Instrum. Methods 92, 137-140 (1971).
[3.19] B. Pellegrini, “ Electric Charge Motion, Induced Current, Energy Balance, and Noise,” Phys. Rev. B 34, 5921-5924 (1986).
[3.20] G. Reimbold, "Modified 1/f Trapping Noise Theory and Experiments in MOS Transistors Biased from Weak to Strong Inversion - Influence of Interface States," IEEE Trans. Electron Devices 31, 1190-1198 (1984).
[3.21] E. Simoen, B. Dierickx, C. L. Claeys, and G. J. Declerck, "Explaining the Amplitude of RTS Noise in Submicrometer MOSFETs," IEEE Trans. Electron Devices 39, 422-429 (1992).
[3.22] A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, "RTS Amplitudes in Decananometer MOSFETs: 3-D Simulation Study," IEEE Trans. Electron Devices 50, 839-845 (2003).
[3.23] K. Sonoda, K. Ishikawa, T. Eimori, and O. Tsuchiya, "Discrete Dopant Effects on Statistical Variation of Random Telegraph Signal Magnitude," IEEE Trans. Electron Devices 54, 1918-1925 (2007).
[3.24] R. G. Southwick III, K. P. Cheung, J. P. Campbell, S. A. Drozdov, J. T. Ryan, J. S. Suehle, and A. S. Oates, “Physical Model for Random Telegraph Noise Amplitudes and Implications,” SNW 2012, 1-2.
[3.25] K. P. Cheung, R. G. Southwick III, and J. P. Campbell, “MOSFET Low Frequency Noise Prediction and Control,” ICSICT 2012, 1-4.
[3.26] O. Roux dit Buissson, G. Ghibaudo, and J. Brini, “Model for Drain Current RTS Amplitude in Small Area MOS Transistor,” Solid-State Electron. 35, 1273-1276 (1992).
[3.27] B. H. Lee, C. D. Young, R. Choi, J. H. Sim, G. Bersuker, C. Y. Kang, R. Harris, G. A. Brown, K. Matthews, S. C. Song, N. Moumen, J. Barnett, P. Lysaght, K. S. Choi, H. C. Wen, C. Huffman, H. Alshareef, P. Majhi, S. Gopalan, J. Peterson, P. Kirsh, H.-J. Li, J. Gutt, M. Gardner, H. R. Huff, P. Zeitzoff, R. W. Murto, L. Larson, and C. Ramiller, “Intrinsic Characteristics of High-k Devices and Implications of Fast Transient Charging Effects,” IEDM 2004, 859-862.
[3.28] B. H. Lee, C. Young, R. Choi, J. H. Sim, G. Bersuker, and G. Brown,“Transient Charging and Relaxation in High-k Gate Dielectrics and Their Implications,” Jpn. J. Appl. Phys. 44, 2415-2419 (2005).
[3.29] C. D. Young, Y. Zhao, M. Pendley, B. H. Lee, K. Matthews, J. H. Sim, R. Choi, G. A. Brown, R. W. Murto, and G. Bersuker, “Ultra-Short Pulse Current-Voltage Characterization of the Intrinsic Characteristics of High-k Devices,” Jpn. J. Appl. Phys. 44, 2437-2440 (2005).
[3.30] H.-J. Cho, Y. Son, S. Jang, and H. Shin, “Study of Slow Oxide Trap Creating Random Telegraph Noise within a Gate Edge Overlap Region in Inversion Mode,” Appl. Phys. Lett. 99, 232904-1-3 (2011).
[3.31] M. J. Kirton and M. J. Uren, “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States and Low-Frequency (1/ƒ) Noise,” Adv. Phys. 38, 367-468 (1989).
[3.32] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random Telegraph Noise of Deep-Submicrometer MOSFET’s,” IEEE Electron Device Lett. 11, 90-92 (1990).
[3.33] A. Avellan, W. Krautschneider, and S. Schwantes, “Observation and modeling of random telegraph signals in the gate and drain currents of tunneling metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett. 78, 2790-2792 (2001).
[3.34] F. Martinez, C. Leyris, G. Neau, M. Valenza, A. Hoffmann, J. C. Vildeuil, E. Vincent, F. Boeuf, T. Skotnicki, M. Bidaud, D. Barge, and B. Tavel, “Oxide Traps Characterization of 45nm MOS Transistors by Gate Current R.T.S. Noise Measurements,” Microelectron. Eng. 80, 54-57 (2005).
[3.35] C. M. Chang, S. S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C. Chien, and S. W. Sun, “The observation of trapping and detrapping effects in high-k gate dielectric MOSFETs by a new gate current Random Telegraph Noise (IG-RTN) approach,” IEDM 2008, 787-790.
[3.36] S. Lee, H.-J. Cho, Y. Son, D. S. Lee, and H. Shin, “Characterization of Oxide Traps Leading to RTN in High-k and Metal Gate MOSFETs,” IEDM 2009, 763-766.
[3.37] H.-J. Cho, S. Lee, B.-G. Park, and H. Shin, “Extraction of trap energy and location from random telegraph noise in gate leakage current (Ig RTN) of metal-oxide semiconductor field effect transistor (MOSFET),” Solid-State Electron. 54, 362-367 (2010).
[3.38] H.-J. Cho, Y. Son, B. Oh, S. Lee, J.-H. Lee, B.-G. Park, and H. Shin, “Observation of Slow Oxide Traps at MOSFETs Having Metal/High-k Gate Dielectric Stack in Accumulation Mode,” IEEE Trans. Electron Devices 57, 2697-2703 (2010).
[3.39] J.-W. Lee, B. H. Lee, H. Shin, and J.-H. Lee, “Investigation of Random Telegraph Noise in Gate-Induced Drain Leakage and Gate Edge Direct Tunneling Currents of High-k MOSFETs,” IEEE Trans. Electron Devices 57, 913-918 (2010).
[3.40] H.-J. Cho, Y. Son, B. Oh, S. Jang, J.-H. Lee, B.-G. Park, and H. Shin, “Investigation of Gate Etch Damage at Metal/High-k Gate Dielectric Stack through Random Telegraph Noise in Gate Edge Direct Tunneling Current,” IEEE Electron Device Lett. 32, 569-571 (2011).
[3.41] T. Nagumo, K. Takeuchi, T. Hase, and Y. Hayashi, “Statistical Characterization of Trap Position, Energy, Amplitude and Time Constants by RTN Measurement of Multiple Individual Traps,” IEDM 2010, 628-631.
Chapter 4
[4.1] Y. P. Feng, A. T. L. Lim, and M. F. Li, “Negative-U Property of Oxygen Vacancy in Cubic HfO2,” Appl. Phys. Lett. 87, 062105-1-3 (2005).
[4.2] H. Takeuchi, D. Ha, and T.-J. King, “Observation of Bulk HfO2 Defects by Spectroscopic Ellipsometry,” J. Vac. Sci. Technol. A 22, 1337-1341 (2004).
[4.3] K. Torii, K. Shiraishi, S. Miyazaki, K. Yamabe, M. Boero, T. Chikyow, K. Yamada, H. Kitajima, and T. Arikado, “Physical Model of BTI, TDDB and SILC in HfO2 -based High-k Gate Dielectrics,” IEDM 2004, 129-132.
[4.4] S. Ferrari and G. Scarel, “Oxygen Diffusion in Atomic Layer Deposited ZrO2 and HfO2 Thin Films on Si (100),” J. Appl. Phys. 96, 144-149 (2004).
[4.5] http://cnx.org/content/m25495/latest/
[4.6] E. Cartier, M. Hopstaken, and M. Copel, “Oxygen Passivation of Vacancy Defects in Metal-Nitride Gated HfO2/SiO2/Si Devices,” Appl. Phys. Lett. 95, 042901-1-3 (2009).
[4.7] H. K. Park, M. Jo, H. Choi, M. Hasan, R. Choi, P. D. Kirsch, C. Y. Kang, B. H. Lee, T.-W. Kim, T. Lee, and H. Hwang, “The Effect of Nanoscale Nonuniformity of Oxygen Vacancy on Electrical and Reliability Characteristics of HfO2 MOSFET Devices,” IEEE Electron Device Lett. 29, 54-56 (2008).
[4.8] B. H. Lee, S. C. Song, R. Choi, and P. Kirsch, “Metal Electrode/High-k Dielectric Gate-Stack Technology for Power Management,” IEEE Trans. Electron Devices 55, 8-20 (2008).
[4.9] J. F. Conley, Jr., Y. Ono, D. J. Tweet, W. Zhuang, M. Khaiser, and R. Solanki, “Preliminary Investigation of Hafnium Oxide Deposited via Atomic Layer Chemical Vapor Deposition (ALCVD),” IRW 2001, 11-15.
[4.10] P. Srinivasan, E. Simoen, Z. M. Rittersma, W. Deweerd, L. Pantisano, C. Claeys, and D. Misra, “Effect of Nitridation on Low-Frequency (1/f) Noise in n- and p-MOSFETs with HfO2 Gate Dielectrics,” J. Electrochem. Soc. 153, G819-825 (2006).
[4.11] C. L. Hinkle, R. V. Galatage, R. A. Chapman, E. M. Vogel, H. N. Alshareef, C. Freeman, E. Wimmer, H. Niimi, A. Li-Fatou, J. B. Shaw, and J. J. Chambers, “Interfacial Oxygen and Nitrogen Induced Dipole Formation and Vacancy Passivation for Increased Effective Work Functions in TiN/HfO2 Gate Stacks,” Appl. Phys. Lett. 96, 103502-1-3 (2010).
[4.12] Y. G. Fedorenko, L. Truong, V. V. Afanas’ev, A. Stesmans, Z. Zhang, and S. A. Campbell, “Impact of Nitrogen Incorporation on Interface States in (100)Si/HfO2,” J. Appl. Phys. 98, 123703-1-9 (2005).
[4.13] H.-S. Jung, Y.-S. Kim, J. P. Kim, L. J. Hyoung, J.-H. Lee, N.-I. Lee, H.-K. Kang, K.-P. Suh, H. J. Ryu, C.-B. Oh, Y.-W. Kim, K.-H. Cho, H.-S. Baik, Y. S. Chung, H. S. Chang, and D. W. Moon, “Improved Current Performance of CMOSFETs with Nitrogen Incorporated HfO2-Al2O3 Laminate Gate Dielectric,” IEDM 2002, 853-856.
[4.14] H.-J. Cho, C. Y. Kang, C. S. Kang, R. Choi, Y. H. Kim, M. S. Akbar, C. H. Choi, S. J. Rhee, and J. C. Lee, “The Effects of Nitrogen in HfO2 for Improved MOSFET Performance,” ISTRS 2003, 68-69.
[4.15] H. Watanabe, S. Kamiyama, N. Umezawa, K. Shiraishi, S. Yoshida, Y. Watanabe, T. Arikado, T. Chikyow, K. Yamada, and K. Yasutake, “Role of Nitrogen Incorporation into Hf-Based High-k Gate Dielectrics for Termination of Local Current Leakage Paths,” Jpn. J. Appl. Phys. 44, L1333-1336 (2005).
[4.16] P. Morfouli, G. Ghibaudo, T. Ouisse, E. Vogel, W. Hill, V. Misra, P. McLarty, and J. J. Wortmann, “Low-Frequency Noise Characterization of n- and p-MOSFET's with Ultrathin Oxynitride Gate Films,” IEEE Electron Device Lett. 17, 395-397 (1996).
[4.17] D. P. Triantis, A. N. Birbas, and J. J. Zimmerman, “Flicker Noise in Submicron Metal Oxide Semiconductor Field Effect Transistors with Nitrided Gate Oxide,” J. Appl. Phys. 77, 6021-6025 (1995).
[4.18] Z.-J. Ma, Z. H. Liu, J. T. Krick, H. J. Huang, Y. C. Cheng, C. Hu, and P. K. Ko, “Optimization of Gate Oxide N2O Anneal for CMOSFET's at Room and Cryogenic Temperatures,” IEEE Trans. Electron Devices 41, 1364-1372 (1994).
[4.19] M. Da Rold, E. Simoen, S. Mertens, M. Schaekers, G. Badenes, and S. Decoutere, “Impact of Gate Oxide Nitridation Process on 1/f Noise in 0.18μm CMOS,” Microelectron. Eng. 41, 1933-1938 (2001).
[4.20] P. M. Gammon, A. Perez-Tomas, M. R. Jennings, O. J. Guy, N. Rimmer, J. Llobet, N. Mestres, P. Godignon, M. Placidi, M. Zabala, J. A. Covington, and P. A. Mawby, “Integration of HfO2 on Si/SiC Heterojunctions for the Gate Architecture of SiC Power Devices,” Appl. Phys. Lett. 97, 013506-1-3 (2010).
[4.21] J. K. Rudra and W. B. Fowler, “Oxygen Vacancy and the E1’ Center in Crystalline SiO2,” Phys. Rev. B 35, 8223-8230 (1987).
[4.22] A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and Interstitial Defects in Hafnia,” Phys. Rev. B 65, 174117-1-13 (2002).
[4.23] A. S. Foster, A. L. Shluger, and R. M. Nieminen, “Mechanism of Interstitial Oxygen Diffusion in Hafnia,” Phys. Rev. Lett. 89, 225901-1-4 (2002).
[4.24] N. Umezawa, K. Shiraishi, T. Ohno, H. Watanabe, T. Chikyow, K. Torii, K. Yamabe, K. Yamada, H. Kitajima, and T. Arikado, “First-Principles Studies of the Intrinsic Effect of Nitrogen Atoms on Reduction in Gate Leakage Current through Hf-based High-k Dielectrics,” Appl. Phys. Lett. 86, 143507-1-3 (2005).
[4.25] R. Puthenkovilakam, Y.-S. Lin, J. Choi, J. Lu, H.-O. Blom, P. Pianetta, D. Devine, M. Sendler, and J. P. Chang, “Effects of Post-Deposition Annealing on the Material Characteristics of Ultrathin HfO2 Films on Silicon,” J. Appl. Phys. 97, 023704-1-7 (2005).
[4.26] J. K. Schaeffer, L. R. C. Fonseca, S. B. Samavedam, Y. Liang, P. J. Tobin, and B. E. White, “Contributions to the Effective Work Function of Platinum on Hafnium Dioxide,” Appl. Phys. Lett. 85, 1826-1828 (2004).
[4.27] M. Wittmer, J. Noser, and H. Melchior, “Oxidation Kinetics of TiN Thin Films,” J. Appl. Phys. 52, 6659-6664 (1981).
[4.28] H. G. Tompkins, “Oxidation of Titanium Nitride in Room Air and in Dry O2,” J. Appl. Phys. 70, 3876-3880 (1991).
[4.29] P. C. McIntyre, S. R. Summerfelt, and C. J. Maggiore, “Oxidation Kinetics of TiN Layers: Exposed and Beneath Pt Thin Films,” Appl. Phys. Lett. 70, 711-713 (1997).
[4.30] J.-J. Ganem, I. Trimaille, J. V. Bardeleben, J.-L. Cantin, and V. Narayanan, “Effect of Thermal Dry Oxidation on Stacked TiN/HfO2/SiO2/Si Structures,” SISC 2006 (unpublished).
[4.31] L. Lin and J. Robertson, “Atomic Mechanism of Flat-Band Voltage Shifts at La2O3, Al2O3 and Nb2O5 Capping Layers,” Microelectron. Eng. 86, 1743-1746 (2009).
[4.32] H. J. Li and M. I. Gardner, “Dual High-k Gate Dielectric With Poly Gate Electrode: HfSiON on nMOS and Al2O3 Capping Layer on pMOS,” IEEE Electron Device Lett. 26, 441-444 (2005).
[4.33] E. Cartier, F. R. McFeely, V. Narayanan, P. Jamison, B. P. Linder, M. Copel, V. K. Paruchuri, V. S. Basker, R. Haight, D. Lim, R. Carruthers, T. Shaw, M. Steen, J. Sleight, J. Rubino, H. Deligianni, S. Guha, R. Jammy, and G. Shahidi, “Role of Oxygen Vacancies in VFB/Vt Stability of pFET Metals on HfO2,” VLSI 2005, 230-231.
[4.34] B. Chen, R. Jha, H. Lazar, N. Biswas, J. Lee, B. Lee, L. Wielunski, E. Garfunkel, and V. Misra, “Influence of Oxygen Diffusion through Capping Layers of Low Work Function Metal Gate Electrodes,” IEEE Electron Device Lett. 27, 228-230 (2006).
[4.35] J. Lee, H. Park, H. Choi, M. Hasan, M. Jo, M. Chang, B. H. Lee, C. S. Park, C. Y. Kang, and H. Hwang, “Modulation of TiSiN Effective Work Function Using High-Pressure Postmetallization Annealing in Dilute Oxygen Ambient,” Appl. Phys. Lett. 92, 263505-1-3 (2008).
[4.36] E. Cartier, M. Steen, B. P. Linder, T. Ando, R. Iijima, M. Frank, J. S. Newbury, Y. H. Kim, F. R. McFeely, M. Copel, R. Haight, C. Choi, A. Callegari, V. K. Paruchuri, and V. Narayanan, “pFET Vt Control with HfO2/TiN/poly-Si Gate Stack Using a Lateral Oxygenation Process,” VLSI 2009, 42-43.
[4.37] W. Mizubayashi, K. Akiyama, W. Wang, M. Ikeda, K. Iwamoto, Y. Kamimuta, A. Hirano, H. Ota, T. Nabatame, and A. Toriumi, “Novel Vth Tuning Process for HfO2 CMOS with Oxygen-doped TaCx,” VLSI 2008, 42-43.
[4.38] J. R. Hauser and K. Ahmed, “Characterization of Ultra-Thin Oxides Using Electrical C-V and I-V Measurements,” Charact. Metrol. ULSI Technol. 1998, 235-239.
[4.39] I. De, D. Johri, A. Srivastava, and C. M. Osburn, “Impact of Gate Workfunction on Device Performance at the 50nm Technology Node,” Solid-State Electron. 44, 1077-1080 (2000).
[4.40] http://www.cnbeta.com/articles/148803.htm
[4.41] L. Wu, H. Y. Yu, X. Li, K. L. Pey, K. Y. Hsu, H. J. Tao, Y. S. Chiu, C. T. Lin, J. H. Xu, and H. J. Wan, “Investigation of ALD or PVD (Ti-rich vs. N-rich) TiN Metal Gate Thermal Stability on HfO2 High-k,” VLSI-TSA 2010, 90-91.
Chapter 5
[5.1] C.-H. Yu, L.-W. Cheng, C.-H Hsu, C.-H Chou, T.-F. Chiang, C.-M. Lai, Y.-W Chen, J.-T. Tseng, C.-T. Lin, and G.-H. Ma, “Metal Gate Transistor and Method for Fabricating the Same,” US Patent 8084824 B2, 2011.
[5.2] http://www.d2inlinesolutions.com/technology/sputtering.html
[5.3] R. A. Surmenev, “A Review of Plasma-Assisted Methods for Calcium Phosphate-based Coatings Fabrication,” Surf. Coat. Technol. 206, 2035-2056 (2012).
[5.4] http://elearning.stut.edu.tw/caster/4/no4/1.htm
[5.5] http://cp.literature.agilent.com/