簡易檢索 / 詳目顯示

研究生: 溫婷婷
Wen, Ting TIng
論文名稱: 磁力輔助微奈米壓印成型之研究
A study of electromagnetic force-assisted Micro- and nano-imprinting technology
指導教授: 賀陳弘
Hocheng, Hong
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 130
中文關鍵詞: 軟模磁力輔助壓印奈米線陣列微透鏡陣列磁性光阻輔助壓印磁性為結構導磁性軟模具
外文關鍵詞: Magnetic force-assisted imprint, microlens arrays, nano-wire structures, ferromagnetic nanopowder-assisted imprint, magnetic structures, Magnetic soft mold
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微奈米結構與微系統元件是未來應用於光電、生物醫療與顯示器的關鍵模組,而傳統微元件的複製量產技術,需要製造程序複雜的剛性模具與昂貴的精密設備,以及高溫、高壓、冷卻的費時過程,且剛性模具與傳統壓印機構在表面平行度與表面粗糙度方面不易控制,脫膜時材料沾黏等問題亦難解決。因此為了提升微奈米結構元件在製造上的競爭力,本研究整合類LIGA製程與矽膠鑄造技術,開發創新的磁性軟模具與磁力輔助UV壓印設備,在低溫與低壓製程條件下,快速複製與生產微奈米結構元件。
    依照不同的產品與製程的需求,本研究主題可區分成(a)軟模磁力輔助壓印法製作奈米線陣列與微透鏡陣列(b)磁性光阻輔助壓印法製作磁性奈米結構。
    本研究所開發的『軟模磁力輔助壓印成型方法與裝置』,即是整合PDMS鑄造與參雜強磁性奈米鐵粉的方式,製作出雙層式的導磁性微奈米結構軟模,再配合塗有紫外光固化材料的基板,置入磁力輔助壓印機台中進行壓印與曝光固化,即可獲得微奈米結構元件。另外,可藉由添加不同鐵粉比例的磁性軟模具及其他製程參數的控制(例如磁壓力大小、壓印時間與UV固化時間),成功製造出奈米線陣列與微透鏡陣列元件。
    『磁性光阻輔助壓印成型』,則是自行調製強磁性的光固化材料(磁性光阻劑),並於導磁性壓印基板(於背面電鍍鎳層)的正面塗佈磁性光固化材料後,置入磁力輔助壓印機台中進行壓印與曝光固化,以製造出具有磁性的奈米結構元。
    本研究成功建立微機電製程、磁性軟模鑄造、磁力輔助壓印複製成型技術之整合技術平台。在製造原理上,此法兼具創新性與突破性;在製造特性方面則具有低溫、低壓、低成本與可快速量產(整個製程成型時間約10∼20秒)的優勢。此技術製程簡易、快速、成本低廉,非常適用於微系統光學與磁性元件之製造上,將有助於發展高附加價值的光電產業。


    In recent years, microstructure devices and micro-systems have been widely used in various applications such as information processing, optical communication, optoelectronics, flat panel display and bio-technology. With the paramount concern of cost in many new micro-system applications, process technology is becoming one of the most important elements for mass production. However, the traditional processes involve high temperature, high pressure and require expensive facilities. They are complicated and time-consuming batch-wise processes.
    From this perspective, there are two innovative imprinting technologies for rapid fabricating micro or nano-devices and magnetic structure proposed in the current study.
    One is Magnetic force-assisted imprint technique. In this study, an electromagnetic force assisted imprinting facility with UV exposure capacity has been designed, constructed and tested. In use of electromagnetic force to press the magnetic stamp written with submicron-scale features into a UV-curable resist on the substrate, the liquid photopolymer can be patterned at room temperature. Under the proper processing conditions(magnetic force, pressing duration and UV curing dose), the polymeric microlens arrays and nano-wire structures can be successfully fabricated and have smooth surface and uniform property over a large area.
    The other is ferromagnetic nanopowder-assisted imprint technology for reduced and uniform pressure during magnetic force-assisted imprint. Fe-powder is blended into the resist which is attracted on the mold written with submicron-scale features by the electromagnetic force. The experimental results show the uniform and clearly transferred patterns into the resist with less electromagnetic force. This technique implies the potential for efficient fabrication of submicron-scale features at less-force and one-step direct forming magnetic on large area with high productivity at low cost.
    In summary, this innovative low-cost and high-efficiency technique has many advantages over the conventional techniques. It shows the potential for fabricating micro and submicron polymer and magnetic structures at room temperature and low pressure on large substrates with high productivity at 10~20 seconds per cycle. The author believes that the novel process is expected to give an impact to the micro-system fabrication technology and to create a highly value-added technology in optoelectronics industry.

    誌謝 ………………………………………………………………………I 中文摘要 ……………………………………………………………… II 英文摘要 ………………………………………………………………III 目錄 ……………………………………………………………………IV 表目錄 …………………………………………………………………VII 圖目錄 ………………………………………………………………VIII 第一章 導論…………………………………………………………1 1-1微奈米機電系統科技之發展與應用…………………………………1 1-2微奈米機電系統科技之起源……………………………………… 2 1-2-1矽晶圓微細加工技術………………………………………………2 1-2-2 LIGA製程技術……………………………………………………2 1-2-3 各種精密複製成型技術…………………………………………4 1-3研究動機………………………………………………………………9 1-4研究方向與目標……………………………………………………11 1-5論文內容與架構……………………………………………………12 第二章 文獻回顧……………………………………………………13 2-1微熱壓印成型………………………………………………………13 2-1-1基礎製程研究……………………………………………………13 2-1-2光學元件製造……………………………………………………15 2-1-3生醫元件製造……………………………………………………16 2-1-4微機電元件製作…………………………………………………17 2-2紫外光UV-壓印成型(SFIL) ………………………………………21 2-3軟模壓印成型………………………………………………………22 2-4磁性微奈米元件的應用……………………………………………25 2-5本章結語……………………………………………………………28 第三章 實驗規劃與設備……………………………………………26 3-1實驗規劃……………………………………………………………26 3-2實驗設備……………………………………………………………27 3-2-1磁力輔助壓印機台之設計與開發………………………………27 3-2-2電磁力推導理論與量測…………………………………………28 3-2-3磁壓力實驗………………………………………………………32 3-3壓印軟模具設計和製造……………………………………………44 3-3-1透明軟模具製造…………………………………………………44 3-3-2磁性軟模具製造…………………………………………………46 3-4壓印材料備製與技術驗證…………………………………………53 3-4-1紫外光固化材料與磁性光固化材料備製………………………53 3-4-2透明基板與磁性基板備製………………………………………53 3-4-3磁力輔助壓印製程之驗證………………………………………54 3-5其他實驗設備與量測儀器…………………………………………57 3-5-1微機電製程設備…………………………………………………57 3-5-2微結構量測………………………………………………………59 3-5-3微結構光學檢測…………………………………………………61 3-5-4微結構磁性檢測…………………………………………………61 3-6本章結語……………………………………………………………62 第四章 氣體熱壓製作PC微奈米結構母模…………………………65 4-1類LIGA技術製作微奈米結構………………………………………65 4-1-1矽晶圓奈米線陣列模具製作……………………………………65 4-1-2微透鏡陣列模穴結構(鎳模具)的製作…………………………67 4-2氣體熱壓成型製程…………………………………………………70 4-3PC微奈米結構母模製作……………………………………………72 4-3-1PC奈米線陣列結構製作…………………………………………72 4-3-2PC微透鏡陣列結構製作…………………………………………72 4-4本章結語……………………………………………………………77 第五章 磁性軟模微奈米結構壓印 ………………………………78 5-1奈米線壓印實驗……………………………………………………78 5-1-1壓印製程………………………………………………………… 78 5-1-2軟模圖案設計…………………………………………………… 80 5-1-3製程參數實驗結果…………………………………………… 80 5-1-4成品性質檢測結果…………………………………………… 88 5-2微透鏡壓印實驗 ………………………………………………… 90 5-2-1壓印製程…………………………………………………………90 5-2-2軟模圖案設計……………………………………………………91 5-2-3製程參數實驗結果………………………………………………92 5-2-4成品性質檢測結果……………………………………………101 5-2-5微透鏡光學量測結果…………………………………………104 5-3 本章結語…………………………………………………………107 第六章 磁性奈米線陣列壓印……………………………………109 6-1壓印製程……………………………………………………………109 6-2軟模圖案設計………………………………………………………112 6-3製程參數實驗結果…………………………………………………113 6-4品質檢測結果………………………………………………………117 6-5磁性量測結果………………………………………………………119 6-6本章結語……………………………………………………………121 第七章 結論………………………………………………………122 7-1研究成果……………………………………………………………122 7-2未來研究方向與展望………………………………………………123 參考文獻………………………………………………………………124 表 目 錄 表1-1 磁力輔助UV壓印方法與傳統複製成型技術之優劣比較………8 表3-1參雜鐵粉的比例…………………………………………………36 表3-2 銅片的應變量(鐵粉含量42wt%)……………………………36 表3-3 銅片的應變量(鐵粉含量58wt%)……………………………37 表3-4 銅片的應變量(鐵粉含量73wt%)……………………………37 表3-5 銅片的應變量(鐵粉含量81wt%)……………………………38 表3-6軟模含鐵量與磁力的關係………………………………………39 表3-7鎳的比例…………………………………………………………40 表3-8銅片應變量(鎳含量- 79wt%)…………………………………40 表3-9銅片應變量(鎳含量-87wt%)…………………………………41 表3-10銅片應變量(鎳含量-95wt%)…………………………………41 表3-11軟模含鐵量與磁力的關係………………………………………42 表3-12磁力均勻性測試…………………………………………………46 表4-1 氣體熱壓塑膠微透鏡陣列參數配置……………………………73 表5-1 奈米線壓印實驗配置……………………………………………83 表5-2奈米線陣列品質均勻量測………………………………………89 表5-3 微透鏡壓印製程的實驗參數配置………………………………93 表5-4 微透鏡的平均曲率半徑與焦距………………………………104 表6-1 奈米線結構充填高度…………………………………………113 表6-2奈米線寬度與高度量測(50條)度………………………………118 圖 目 錄 圖1-1 微奈米機電系統產品的應用與市場分析………………………1 圖1-2 LIGA製程步驟……………………………………………………3 圖1-3微射出成型系統裝置與架構………………………………………4 圖1-4微熱壓成型機構……………………………………………………5 圖1-5 UV壓印成型的製程步驟…………………………………………6 圖1-6 商業化的UV壓印成型機…………………………………………7 圖1-7軟模磁力輔助壓印與磁性光阻輔助壓印製程…………………10 圖2-1(a)微小圓柱(b)微小光譜儀………………………………13 圖2-2(a)塑膠微元件製造流程(b)高深寬比的微元件…………14 圖2-3熱壓溫度與壓力對模穴充填之影響……………………………14 圖2-4高分子光束分離器………………………………………………15 圖2-5多模光波導元件與微透鏡陣列元件……………………………15 圖2-6(a)繞射光學元件的製程(b)成品與光學檢測……………16 圖2-7(a)石英模具的製程(b)塑膠生物晶片……………………16 圖2-8微流道生物晶片(a)鎳模具(b)PMMA塑膠熱壓成品………17 圖2-9 塑膠梳狀微致動器………………………………………………18 圖2-10奈米壓印微影製程………………………………………………19 圖2-11 奈米壓印圖案之解析度………………………………………19 圖2-12雷射輔助直接壓印矽基材微影技術……………………………19 圖2-13奈米金屬圓點……………………………………………………20 圖2-14 AFM下圓點的表面輪廓…………………………………………20 圖2-15壓印微影製作DNA電泳式生物晶片……………………………20 圖2-16 紫外光UV-壓印成型製作2D與3D微奈米結構…………………21 圖2-17紫外光UV-壓印成型製作晶圓等級的光電整合元件…………21 圖2-18微轉移成型製程示意圖…………………………………………22 圖2-19 PDMS軟模的壓印特性與優點…………………………………23 圖2-20 PDMS軟模的壓印特性與大面積壓印…………………………23 圖2-21 標準的PDMS軟模壓印與UV固化製程 …………………………24 圖2-22 紫外光固化材料的微奈米結構………………………………24 圖2-23 Ni磁性奈米結構………………………………………………25 圖2-24 DNA磁性鏈……………………………………………………26 圖2-25(a)奈米球微影術(b)磁性物質陣列………………………26 圖2-26 直徑210nm-Ni磁性奈米結構陣列……………………………27 圖2-27(a)磁性Co奈米結構(b)MFM檢測磁性奈米結構…………27 圖2-28 軟性模具受壓不均而變形的現象與問題……………………28 圖3-1實驗規劃與流程…………………………………………………29 圖3-2 磁力輔助UV壓印設備之架構設計………………………………30 圖3-3 磁力輔助壓印設備實體照片……………………………………31 圖3-4 應變規的連接方式………………………………………………34 圖3-5 磁力的量測方式…………………………………………………35 圖3-6 鐵粉含量與電流及銅片應變量的關係…………………………38 圖3-7 軟模含鐵量與電流及磁力的關係………………………………39 圖3-8 鎳重比例與電流及銅片應變量的關係…………………………42 圖3-9 軟模含鐵量與電流及磁力的關係………………………………43 圖3-10富士介質片與感壓軟片的工作原理……………………………44 圖3-11 感壓軟片的顯色層上色度分佈………………………………45 圖3-12 磁力量測位置…………………………………………………45 圖3-13透明的奈米線陣列軟模的製作…………………………………47 圖3-14 透明PDMS軟模具的實體圖與SEM圖……………………………48 圖3-15磁性奈米線陣列軟模……………………………………………49 圖3-16 磁性微透鏡陣列軟模的製作…………………………………51 圖3-17 磁性PDMS軟模具的照片與SEM影像……………………………52 圖3-18 具微透鏡陣列的磁軟模具之表面輪廓………………………52 圖3-19分層製作與未分層製作磁性軟模的比較………………………53 圖3-20 各種微結構圖形的磁性軟模具………………………………54 圖3-21透明基板與磁性基板……………………………………………56 圖3-22磁力輔助軟模壓印測試…………………………………………58 圖3-23 磁性奈米線陣列之成型品……………………………………58 圖3-24 微機電製程相關設備…………………………………………60 圖3-25 各項微結構量測儀器…………………………………………62 圖3-26 原子力顯微鏡…………………………………………………62 圖3-27 微透鏡陣列之光學檢測架構…………………………………63 圖3-28磁力計……………………………………………………………63 圖4-1電子束微影製作矽晶圓母模……………………………………66 圖4-2微孔洞矽晶圓模具製作流程……………………………………68 圖4-3 微孔洞陣列矽晶圓模具…………………………………………68 圖4-4微透鏡陣列模穴(鎳模具)製造流程……………………………69 圖4-5 氣體熱壓成型機構與設備設計…………………………………70 圖4-6氣體熱壓製程操作階段…………………………………………71 圖4-7塑膠奈米線陣列結構母模………………………………………72 圖4-8熱壓製程溫度對微透鏡充填高度影響…………………………74 圖4-9氣體壓力對微透鏡充填高度影響………………………………75 圖4-10熱壓時間對微透鏡充填高度影響………………………………76 圖4-11塑膠微透鏡陣列母模……………………………………………77 圖5-1 磁性軟模壓印奈米線陣列的製程階段分析……………………79 圖5-2 模具表面之次微米線陣列圖案…………………………………80 圖5-3 軟模變形…………………………………………………………81 圖5-4 脫模缺陷…………………………………………………………81 圖5-5 壓印時間測試……………………………………………………82 圖5-6 奈米線列的製程操作窗…………………………………………82 圖5-7量測位置…………………………………………………………84 圖5-8 壓印時間對充填高度的影響……………………………………84 圖5-9 壓印時間的影響(AFM的量測結果) ……………………………85 圖5-10壓印壓力對奈米線結構之充填高度的影響……………………86 圖5-11磁力輔助壓印奈米線列SEM圖…………………………………87 圖5-12奈米線陣列的品質均勻性檢測…………………………………88 圖5-13奈米線寬度量測(50條) ………………………………………89 圖5-14奈米線高度量測(50條) ………………………………………90 圖5-15磁性軟模壓印微透鏡陣列的製程階段分析……………………91 圖5-16磁性微透鏡陣列軟模……………………………………………92 圖5-17微透鏡壓印成型之製程操作範圍………………………………94 圖5-18 UV能量不足所造成的固化與脫模缺陷………………………94 圖5-19 UV能量過高的情形(邊緣裂化) ………………………………95 圖5-20充填時間不足的情形 …………………………………………95 圖5-21壓印時間超過15s,材料充填的情形…………………………96 圖5-22製程壓力對充填高度之影響……………………………………97 圖5-23 P=0.26kgf/cm2,透鏡平均高度………………………………97 圖5-24 P P=0.50kgf/cm2,透鏡平均高度……………………………97 圖5-25 P=0.72kgf/cm2,透鏡平均高度………………………………98 圖5-26 P=0.86kgf/cm2透鏡平均高度…………………………………98 圖5-27 P=0.94kgf/cm2 ,透鏡平均高度……………………………98 圖5-28 P=1.04kgf/cm2,透鏡平均高度………………………………99 圖5-29微透鏡陣列………………………………………………………99 圖5-30單一微透鏡檢測………………………………………………100 圖5-31透鏡表面輪廓量測位置與SEM圖………………………………101 圖5-32 微透鏡均勻性量測……………………………………………102 圖5-33 微透鏡與模具的外型比較……………………………………102 圖5-34單一微透鏡之表面粗糙度量測 ………………………………103 圖5-35微透鏡陣列成品之聚焦光點與光強分佈……………………105 圖5-36微透鏡高度與曲率關係………………………………………106 圖5-37計算焦距與實際與焦距的比較………………………………107 圖6-1 鐵磁性奈米線結構的製程步驟………………………………111 圖6-2整體製程的階段分析與重要參數的控制………………………112 圖6-3 透明PDMS軟模的微結構圖案…………………………………112 圖6-4 磁力對奈米線陣列結構充填高度的影響……………………114 圖6-5 不同磁力下奈米線陣列結構的充填情形……………………115 圖6-6 磁性奈米線陣列結構的SEM圖…………………………………116 圖6-7 AFM量測結果……………………………………………………116 圖6-8 磁性奈米線陣列的均勻性量測………………………………117 圖6-9 磁性奈米線寬度量測(50條) …………………………………118 圖6-10 磁性奈米線高度量測(50條) ………………………………119 圖6-11 光固化材料與磁性光固化材料的壓印比較…………………120 圖6-12 磁性奈米線結構的磁滯曲線(M-H loop) …………………120

    1.http://www.semiconductor.net/article/CA6527564.html
    2.http://www.imm-mainz.de/
    3.V. Piotter, T. Hanemann, R. Ruprecht, J. Haußelt, “Injection molding and related techniques for fabrication of microstructures”, Microsystem Technologies, 3, p129-133 (1997).
    4.L. Weber, W. Ehrfeld, H. Freimuth, M. Lacher, H. Lehr, B. Pech, “Micro molding - apowerful tool for the large scale production of precise microstructures”, Proc. SPIE Micromachining and Microfabrication Process Technology II , Vol. 2879, p156-167(1996)
    5.C. Kukla, H. Loibl, H. Detter and W. Hannenheim,“Micro-Injection Moulding-The Aims of a Project Partnership,”Kunststoffe Plast Europe, 88, p6-7 (1998).
    6.D. Seidler and R. Zelenka, “Micro-injection moulding -transgressing the limits of the feasible,”Kunststoffe Plast Europe, 88, p7-9 (1998).
    7.R. Hsiao, “Fabrication of magnetic recording heads and dry etching of head materials.” IBM Journal of Research and Development, V.42, p1-10 (1999).
    8.H. Eberle, “Micro-injection moulding -mould technology”, Kunststoffe Plast Europe, 88, p9-10 (1998).
    9.H. Becker and C. Gartner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.21, p12-26 (2000).
    10.H. Becker and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators, vol.83, p130–135(2000).
    11.S. M. Kim, D. Kim, S. Kang and S. Ahn, “Replication of micro-optical components by UV-molding process,” Proceedings of SPIE -The International Society for Optical Engineering, 4984, p63-69 (2003).
    12.M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt and C. G. Willson, “Step and flash imprint lithography:A new approach to high-resolution patterning”, Proceedings of SPIE-The International Society for Optical Engineering, 3676, p379-389 (1999)
    13.http://www.microresist.de/products/ormocers/ormocore_en.htm
    14.http://www.nanonex.com/machines.htm
    15.http://www.semiconductor-today.com/features/COMPRO_EVG.htm
    16.H. Schift, L. J. Heyderman, M. Auf der Maur and J. Gobrecht,“Pattern formation in hot embossing of thin polymer films,”Nanotechnology, 12, p173–177 (2001).
    17.Y. J. Juang, L. J. Lee and K. W. Koelling, “Hot embossing in microfabrication. part I: experimental,”Polymer Engineer and Science, 42, p539-550 (2002).
    18.N. S. Ong, Y. H. Koh and Y. Q. Fu, “Microlens array produced using hot embossing process,”Microelectronic Engineering, 60, p365-379 (2002).
    19.C. G. Choi, S. P. Han, B. C. Kim, S. H. Ahn, and M. Y. Jeong, “ Fabrication of Large-Core 1×16 Optical Power Splitters in Polymers Using Hot-Embossing Process,”IEEE Photonics Technology Letters, 15, p825–827 (2003).
    20.K. B. Yoon, C. G. Choi and S. P. Han, “Fabrication of Multimode Polymeric Waveguides by Hot Embossing Lithography,”Japanese Journal of Applied Physics, Part 1, 43, p3450-3451 (2004).
    21.L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. A. Amigo and H. Becker,“Fabrication of plastic microchips by hot embossing,”The Royal Society of Chemistry, 2, p1-4 (2002).
    22.G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung and Y.-H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection”, Sensors and Actuators, B: Chemical, 75, p142-148 (2001).
    23.L. Klintberg, M. Svedberg, F. Nikolajeff and G. Thornell, “Fabrication of a paraffin actuator using hot embossing of polycarbonate,”Sensors and Actuators, A: Physical, 103, p307-316 (2003).
    24.Y. Zhao and T. Cui,“Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique,”Journal of micromechanics and microengineering, 13, p430-435 (2003).
    25.M. Gauthier, and E. Piat , Microfabrication and scale effect studies for a magnetic micromanipulation system, IEEE International Conference on Intelligent Robots and Systems, v 2, p1754-1759 (2002).
    26.M. K. Ghantasala, L. Qin, and D. K. Zmood, Design and fabrication of a micro magnetic bearing, Smart Materials and Structures, v 9, n 2, p235-240 (2000).
    27.T. Budde and H. Gatzen, Patterned sputter deposited SmCo-films for MEMS applications, J. Magn. Magn. Mater., 242, p1146–8 (2002).
    28.W. B. Young,“Analysis of the nanoimprint lithography with a viscous model”, Microelectronic Engineering 77, p405–411(2005)
    29.J. D. Williams and W. Wang, Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology, Microsystem Technologies, v 10, n 10, December, p699-705 (2004).
    30.Y. He, J. Z. Fu and Z. C. Chen,“Research on optimization of the hot embossing processl”, J. Micromech. Microeng., 17, p2420–2425, (2007)
    31.I. V. Roshchin, Magnetic properties of Fe microstructures with focused ion beam-fabricated nano-constrictions, IEEE Transactions on Magnetics, Vol. 37, No. 4, p2101-2103(2001).
    32.M. Heckele, W. Bacher, and K.D. Muller, Hot embossing - The molding technique for plastic microstructures, Microsystem Technologies 4, p122-124(1998)
    33.H. Becker, and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators 83, p130–135 (2000)
    34.C. Shan, R. Maeda, and Y. Murakoshi, Micro Hot Embossing for Replication of Microstructures, Jpn. J. Appl. Phys. Vol.42, p3859-3862 (2003)
    35.X. C. Shan and R. Maeda, Proc. IEEE/LEOS Optical MEMS, Lugano, Switzerland, p21-28(2002)
    36.C. Choi, S. P. Han, B. Kim, S. H. Ahn, and M. Y. Jeong, Fabrication of Large-core 1 16 optical power splitters in polymers using hot-embossing process, IEEE Photonics Technology Letters, Vol. 15, No.6, p825-827(2003)
    37.K. Yoon, C. Choi and S. Han, Fabrication of Multimode Polymeric Waveguides by Hot Embossing Lithography, Jpn. J. Appl. Phys., Vol. 43, p87-90 (2004)
    38.N. S. Ong , Y. H. Koh, and Y. Q. Fu, Microlens array produced using hot embossing process, Microelectronic Engineering 60, p365–379 (2002)
    39.C. T. Pan, Design and fabrication of sub-micrometer eight-level bi-focal diffraction optical elements, J. Micromech. Microeng. 14 p471–479 (2004)
    40.T. K. Shih, C. F.Chen, J. R. Hob, F. T. Chuang,“Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding”, Microelectronic Engineering 83, p2499–2503(2006)
    41.F. Sammouraa, Y. C. Sua, Y. Cai, C. Y. Chi, B. Elamaran, L. Lin, J. C. Chiao,“Plastic 95-GHz rectangular waveguides by micro molding technologies”, Sensors and Actuators A, 127, p270–275(2006)
    42.G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung and Y. H. Lin, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection, Sensors and Actuators B75, p142-148(2001)
    43.L. J. Kricka, P. Fortina, B. Nicholas, J. Panaro, P. Wilding, B. Goretty, L. Amigoc and H. Beckerc, Fabrication of plastic microchips by hot embossing, The Royal Society of Chemistry, 2, 1-4, p1-4(2002)
    44.C.A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, A. Errachid,“Production of structures for microfluidics using polymer imprint techniques”, Microelectronic Engineering, 78–79, p695–700(2005)
    45.Y. Zhao and T. Cui, Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique, J. Micromech. Microeng. 13 p430–435 (2003)
    46.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 67 (21), 20, p3114-3116(1995)
    47.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, J. Vac. Sci. Technol. B, Vol. 14, No.6, p4129-4133(1996)
    48.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint Lithography with 25-Nanometer Resolution, Science V.272, p85-87 (1996)
    49.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Ultrafast and direct imprint of nanostructures in silicon, Nature V417, p835-837(2002)
    50.P. R. Kraussa, and S. Y. Choub, Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Appl. Phys. Lett. 71 (21), p3174-3176(1997)
    51.A. Pepin, P. Youinou, V. Studer, A. Lebib, and Y. Chen, Nanoimprint lithography for the fabrication of DNA electrophoresis chips, Microelectronic Engineering 61, p927–932 (2002)
    52.T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, Step and flash imprint lithography: Template surface treatment and defect analysis, J. Vac. Sci. Technol. B 18, p3572-3577(2000)
    53.P. Dannberg, R. Bierbaum, L. Erdmann, and A. Braeuer, “Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction molding,”Proceedings of SPIE -The International Society for Optical Engineering, 3631, p244-251 (1999).
    54.X. M. Zhao, Y. Xia and G. M. Whitesides,“F abrication of three-dimensional micro-structures: Microtransfer molding,” Advanced Materials, 8, p837-840 (1996).
    55.U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner and H. Kurz, “Wafer scale patterning by soft UV-nanoimprint lithography”, Microelectronic Engineering, 73, p167-171 (2004).
    56.W. M. Choi and O. Park,“A soft-imprint technique for submicron-scale patterns using a PDMS mold”, Microelectronic Engineering, 73, p178-183 (2004).
    57.S.Y. Cho, M. Wei, P. R. Krauss and P. B. Fischer, “ Study of nanoscale magnetic structures fabricated using electron-beam lithography and quantum magnetic disk”, J. Vac Sci. Technol. B 12(6), p3695-3698(1994)
    58.K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shionoya1,“A Discrete Self-Assembled Metal Array in Artificial DNA”,Science Vol. 299, p 34-36(2003).
    59.S. Weekes, F. Y. Ogrin, W. A. Murray,“Fabrication of Large-Area Ferromagnetic Arrays Using Etched Nanosphere Lithography”, Langmuir, 20, p11208-11212(2004)
    60.K. Watanabe, Y. Takemura, Y. Shimazu, J. Shirakashi,“Magnetic nanostructures fabricated by the atomic force microscopy nano-lithography technique”, Nanotechnology, 15, s566-569 (2004).
    61.K. Machidaa, T. Tezukab, T. Yamamotob, T. Ishibashib, Y. Morishitab, A. Koukitub, K. Satob, “Magnetic Structure of Y-shaped Permalloy Arrays Fabricated Using Damascene Technique”, Japanese Journal of Applied Physics. Part 2, Letters & Express Letters, Vol45, p864–866 (2006)
    62.K. Machidaa, T. Tezukab, T. Yamamotob, T. Ishibashib, “Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers”, Journal of Magnetism and Magnetic Materials, p779–782 (2005)
    63.L. Y. Zhang, “Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters”, Journal of Magnetism and Magnetic Materials, vol.321, p169–173 (2009)
    64.K. G. Sharp, G. S. Blackman, N. J. Glassmaker, A. Jagota, and C. Hui, “Effect of Stamp Deformation on the Quality of Microcontact Printing:Theory and Experiment”, Langmuir, 20, p6430-6438(2004)
    65.J. F. Smyth, S. Schultz, D. Kern, H. Schmid, and D. Yee “ Hysteresis of submicron permalloy particulate arrays”, J. Appl. Phys. 63(8), p4237-4239(1988)
    66.G. A. Gibson, J. F. Smith, S. Schultz, and D. P. Kern,” Observation of the switching fields of individual Permalloy particles in nanolithographic arrays via magnetic force microscopy“, IEEE Trans. Magn. MAG-27, p5187- (1991)
    67.S. Y. Chou and P. B. Fischer, ”Double 15-nm-wide metal gates 10nm apart and 70nm thick on GaAs”, J. Vac Sci. Technol. B 8, p1919-1922(1990)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE