研究生: |
溫婷婷 Wen, Ting TIng |
---|---|
論文名稱: |
磁力輔助微奈米壓印成型之研究 A study of electromagnetic force-assisted Micro- and nano-imprinting technology |
指導教授: |
賀陳弘
Hocheng, Hong |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 軟模磁力輔助壓印 、奈米線陣列 、微透鏡陣列 、磁性光阻輔助壓印 、磁性為結構 、導磁性軟模具 |
外文關鍵詞: | Magnetic force-assisted imprint, microlens arrays, nano-wire structures, ferromagnetic nanopowder-assisted imprint, magnetic structures, Magnetic soft mold |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微奈米結構與微系統元件是未來應用於光電、生物醫療與顯示器的關鍵模組,而傳統微元件的複製量產技術,需要製造程序複雜的剛性模具與昂貴的精密設備,以及高溫、高壓、冷卻的費時過程,且剛性模具與傳統壓印機構在表面平行度與表面粗糙度方面不易控制,脫膜時材料沾黏等問題亦難解決。因此為了提升微奈米結構元件在製造上的競爭力,本研究整合類LIGA製程與矽膠鑄造技術,開發創新的磁性軟模具與磁力輔助UV壓印設備,在低溫與低壓製程條件下,快速複製與生產微奈米結構元件。
依照不同的產品與製程的需求,本研究主題可區分成(a)軟模磁力輔助壓印法製作奈米線陣列與微透鏡陣列(b)磁性光阻輔助壓印法製作磁性奈米結構。
本研究所開發的『軟模磁力輔助壓印成型方法與裝置』,即是整合PDMS鑄造與參雜強磁性奈米鐵粉的方式,製作出雙層式的導磁性微奈米結構軟模,再配合塗有紫外光固化材料的基板,置入磁力輔助壓印機台中進行壓印與曝光固化,即可獲得微奈米結構元件。另外,可藉由添加不同鐵粉比例的磁性軟模具及其他製程參數的控制(例如磁壓力大小、壓印時間與UV固化時間),成功製造出奈米線陣列與微透鏡陣列元件。
『磁性光阻輔助壓印成型』,則是自行調製強磁性的光固化材料(磁性光阻劑),並於導磁性壓印基板(於背面電鍍鎳層)的正面塗佈磁性光固化材料後,置入磁力輔助壓印機台中進行壓印與曝光固化,以製造出具有磁性的奈米結構元。
本研究成功建立微機電製程、磁性軟模鑄造、磁力輔助壓印複製成型技術之整合技術平台。在製造原理上,此法兼具創新性與突破性;在製造特性方面則具有低溫、低壓、低成本與可快速量產(整個製程成型時間約10∼20秒)的優勢。此技術製程簡易、快速、成本低廉,非常適用於微系統光學與磁性元件之製造上,將有助於發展高附加價值的光電產業。
In recent years, microstructure devices and micro-systems have been widely used in various applications such as information processing, optical communication, optoelectronics, flat panel display and bio-technology. With the paramount concern of cost in many new micro-system applications, process technology is becoming one of the most important elements for mass production. However, the traditional processes involve high temperature, high pressure and require expensive facilities. They are complicated and time-consuming batch-wise processes.
From this perspective, there are two innovative imprinting technologies for rapid fabricating micro or nano-devices and magnetic structure proposed in the current study.
One is Magnetic force-assisted imprint technique. In this study, an electromagnetic force assisted imprinting facility with UV exposure capacity has been designed, constructed and tested. In use of electromagnetic force to press the magnetic stamp written with submicron-scale features into a UV-curable resist on the substrate, the liquid photopolymer can be patterned at room temperature. Under the proper processing conditions(magnetic force, pressing duration and UV curing dose), the polymeric microlens arrays and nano-wire structures can be successfully fabricated and have smooth surface and uniform property over a large area.
The other is ferromagnetic nanopowder-assisted imprint technology for reduced and uniform pressure during magnetic force-assisted imprint. Fe-powder is blended into the resist which is attracted on the mold written with submicron-scale features by the electromagnetic force. The experimental results show the uniform and clearly transferred patterns into the resist with less electromagnetic force. This technique implies the potential for efficient fabrication of submicron-scale features at less-force and one-step direct forming magnetic on large area with high productivity at low cost.
In summary, this innovative low-cost and high-efficiency technique has many advantages over the conventional techniques. It shows the potential for fabricating micro and submicron polymer and magnetic structures at room temperature and low pressure on large substrates with high productivity at 10~20 seconds per cycle. The author believes that the novel process is expected to give an impact to the micro-system fabrication technology and to create a highly value-added technology in optoelectronics industry.
1.http://www.semiconductor.net/article/CA6527564.html
2.http://www.imm-mainz.de/
3.V. Piotter, T. Hanemann, R. Ruprecht, J. Haußelt, “Injection molding and related techniques for fabrication of microstructures”, Microsystem Technologies, 3, p129-133 (1997).
4.L. Weber, W. Ehrfeld, H. Freimuth, M. Lacher, H. Lehr, B. Pech, “Micro molding - apowerful tool for the large scale production of precise microstructures”, Proc. SPIE Micromachining and Microfabrication Process Technology II , Vol. 2879, p156-167(1996)
5.C. Kukla, H. Loibl, H. Detter and W. Hannenheim,“Micro-Injection Moulding-The Aims of a Project Partnership,”Kunststoffe Plast Europe, 88, p6-7 (1998).
6.D. Seidler and R. Zelenka, “Micro-injection moulding -transgressing the limits of the feasible,”Kunststoffe Plast Europe, 88, p7-9 (1998).
7.R. Hsiao, “Fabrication of magnetic recording heads and dry etching of head materials.” IBM Journal of Research and Development, V.42, p1-10 (1999).
8.H. Eberle, “Micro-injection moulding -mould technology”, Kunststoffe Plast Europe, 88, p9-10 (1998).
9.H. Becker and C. Gartner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.21, p12-26 (2000).
10.H. Becker and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators, vol.83, p130–135(2000).
11.S. M. Kim, D. Kim, S. Kang and S. Ahn, “Replication of micro-optical components by UV-molding process,” Proceedings of SPIE -The International Society for Optical Engineering, 4984, p63-69 (2003).
12.M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt and C. G. Willson, “Step and flash imprint lithography:A new approach to high-resolution patterning”, Proceedings of SPIE-The International Society for Optical Engineering, 3676, p379-389 (1999)
13.http://www.microresist.de/products/ormocers/ormocore_en.htm
14.http://www.nanonex.com/machines.htm
15.http://www.semiconductor-today.com/features/COMPRO_EVG.htm
16.H. Schift, L. J. Heyderman, M. Auf der Maur and J. Gobrecht,“Pattern formation in hot embossing of thin polymer films,”Nanotechnology, 12, p173–177 (2001).
17.Y. J. Juang, L. J. Lee and K. W. Koelling, “Hot embossing in microfabrication. part I: experimental,”Polymer Engineer and Science, 42, p539-550 (2002).
18.N. S. Ong, Y. H. Koh and Y. Q. Fu, “Microlens array produced using hot embossing process,”Microelectronic Engineering, 60, p365-379 (2002).
19.C. G. Choi, S. P. Han, B. C. Kim, S. H. Ahn, and M. Y. Jeong, “ Fabrication of Large-Core 1×16 Optical Power Splitters in Polymers Using Hot-Embossing Process,”IEEE Photonics Technology Letters, 15, p825–827 (2003).
20.K. B. Yoon, C. G. Choi and S. P. Han, “Fabrication of Multimode Polymeric Waveguides by Hot Embossing Lithography,”Japanese Journal of Applied Physics, Part 1, 43, p3450-3451 (2004).
21.L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. A. Amigo and H. Becker,“Fabrication of plastic microchips by hot embossing,”The Royal Society of Chemistry, 2, p1-4 (2002).
22.G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung and Y.-H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection”, Sensors and Actuators, B: Chemical, 75, p142-148 (2001).
23.L. Klintberg, M. Svedberg, F. Nikolajeff and G. Thornell, “Fabrication of a paraffin actuator using hot embossing of polycarbonate,”Sensors and Actuators, A: Physical, 103, p307-316 (2003).
24.Y. Zhao and T. Cui,“Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique,”Journal of micromechanics and microengineering, 13, p430-435 (2003).
25.M. Gauthier, and E. Piat , Microfabrication and scale effect studies for a magnetic micromanipulation system, IEEE International Conference on Intelligent Robots and Systems, v 2, p1754-1759 (2002).
26.M. K. Ghantasala, L. Qin, and D. K. Zmood, Design and fabrication of a micro magnetic bearing, Smart Materials and Structures, v 9, n 2, p235-240 (2000).
27.T. Budde and H. Gatzen, Patterned sputter deposited SmCo-films for MEMS applications, J. Magn. Magn. Mater., 242, p1146–8 (2002).
28.W. B. Young,“Analysis of the nanoimprint lithography with a viscous model”, Microelectronic Engineering 77, p405–411(2005)
29.J. D. Williams and W. Wang, Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology, Microsystem Technologies, v 10, n 10, December, p699-705 (2004).
30.Y. He, J. Z. Fu and Z. C. Chen,“Research on optimization of the hot embossing processl”, J. Micromech. Microeng., 17, p2420–2425, (2007)
31.I. V. Roshchin, Magnetic properties of Fe microstructures with focused ion beam-fabricated nano-constrictions, IEEE Transactions on Magnetics, Vol. 37, No. 4, p2101-2103(2001).
32.M. Heckele, W. Bacher, and K.D. Muller, Hot embossing - The molding technique for plastic microstructures, Microsystem Technologies 4, p122-124(1998)
33.H. Becker, and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators 83, p130–135 (2000)
34.C. Shan, R. Maeda, and Y. Murakoshi, Micro Hot Embossing for Replication of Microstructures, Jpn. J. Appl. Phys. Vol.42, p3859-3862 (2003)
35.X. C. Shan and R. Maeda, Proc. IEEE/LEOS Optical MEMS, Lugano, Switzerland, p21-28(2002)
36.C. Choi, S. P. Han, B. Kim, S. H. Ahn, and M. Y. Jeong, Fabrication of Large-core 1 16 optical power splitters in polymers using hot-embossing process, IEEE Photonics Technology Letters, Vol. 15, No.6, p825-827(2003)
37.K. Yoon, C. Choi and S. Han, Fabrication of Multimode Polymeric Waveguides by Hot Embossing Lithography, Jpn. J. Appl. Phys., Vol. 43, p87-90 (2004)
38.N. S. Ong , Y. H. Koh, and Y. Q. Fu, Microlens array produced using hot embossing process, Microelectronic Engineering 60, p365–379 (2002)
39.C. T. Pan, Design and fabrication of sub-micrometer eight-level bi-focal diffraction optical elements, J. Micromech. Microeng. 14 p471–479 (2004)
40.T. K. Shih, C. F.Chen, J. R. Hob, F. T. Chuang,“Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding”, Microelectronic Engineering 83, p2499–2503(2006)
41.F. Sammouraa, Y. C. Sua, Y. Cai, C. Y. Chi, B. Elamaran, L. Lin, J. C. Chiao,“Plastic 95-GHz rectangular waveguides by micro molding technologies”, Sensors and Actuators A, 127, p270–275(2006)
42.G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung and Y. H. Lin, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection, Sensors and Actuators B75, p142-148(2001)
43.L. J. Kricka, P. Fortina, B. Nicholas, J. Panaro, P. Wilding, B. Goretty, L. Amigoc and H. Beckerc, Fabrication of plastic microchips by hot embossing, The Royal Society of Chemistry, 2, 1-4, p1-4(2002)
44.C.A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, A. Errachid,“Production of structures for microfluidics using polymer imprint techniques”, Microelectronic Engineering, 78–79, p695–700(2005)
45.Y. Zhao and T. Cui, Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique, J. Micromech. Microeng. 13 p430–435 (2003)
46.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 67 (21), 20, p3114-3116(1995)
47.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, J. Vac. Sci. Technol. B, Vol. 14, No.6, p4129-4133(1996)
48.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint Lithography with 25-Nanometer Resolution, Science V.272, p85-87 (1996)
49.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Ultrafast and direct imprint of nanostructures in silicon, Nature V417, p835-837(2002)
50.P. R. Kraussa, and S. Y. Choub, Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Appl. Phys. Lett. 71 (21), p3174-3176(1997)
51.A. Pepin, P. Youinou, V. Studer, A. Lebib, and Y. Chen, Nanoimprint lithography for the fabrication of DNA electrophoresis chips, Microelectronic Engineering 61, p927–932 (2002)
52.T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, Step and flash imprint lithography: Template surface treatment and defect analysis, J. Vac. Sci. Technol. B 18, p3572-3577(2000)
53.P. Dannberg, R. Bierbaum, L. Erdmann, and A. Braeuer, “Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction molding,”Proceedings of SPIE -The International Society for Optical Engineering, 3631, p244-251 (1999).
54.X. M. Zhao, Y. Xia and G. M. Whitesides,“F abrication of three-dimensional micro-structures: Microtransfer molding,” Advanced Materials, 8, p837-840 (1996).
55.U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner and H. Kurz, “Wafer scale patterning by soft UV-nanoimprint lithography”, Microelectronic Engineering, 73, p167-171 (2004).
56.W. M. Choi and O. Park,“A soft-imprint technique for submicron-scale patterns using a PDMS mold”, Microelectronic Engineering, 73, p178-183 (2004).
57.S.Y. Cho, M. Wei, P. R. Krauss and P. B. Fischer, “ Study of nanoscale magnetic structures fabricated using electron-beam lithography and quantum magnetic disk”, J. Vac Sci. Technol. B 12(6), p3695-3698(1994)
58.K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shionoya1,“A Discrete Self-Assembled Metal Array in Artificial DNA”,Science Vol. 299, p 34-36(2003).
59.S. Weekes, F. Y. Ogrin, W. A. Murray,“Fabrication of Large-Area Ferromagnetic Arrays Using Etched Nanosphere Lithography”, Langmuir, 20, p11208-11212(2004)
60.K. Watanabe, Y. Takemura, Y. Shimazu, J. Shirakashi,“Magnetic nanostructures fabricated by the atomic force microscopy nano-lithography technique”, Nanotechnology, 15, s566-569 (2004).
61.K. Machidaa, T. Tezukab, T. Yamamotob, T. Ishibashib, Y. Morishitab, A. Koukitub, K. Satob, “Magnetic Structure of Y-shaped Permalloy Arrays Fabricated Using Damascene Technique”, Japanese Journal of Applied Physics. Part 2, Letters & Express Letters, Vol45, p864–866 (2006)
62.K. Machidaa, T. Tezukab, T. Yamamotob, T. Ishibashib, “Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers”, Journal of Magnetism and Magnetic Materials, p779–782 (2005)
63.L. Y. Zhang, “Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters”, Journal of Magnetism and Magnetic Materials, vol.321, p169–173 (2009)
64.K. G. Sharp, G. S. Blackman, N. J. Glassmaker, A. Jagota, and C. Hui, “Effect of Stamp Deformation on the Quality of Microcontact Printing:Theory and Experiment”, Langmuir, 20, p6430-6438(2004)
65.J. F. Smyth, S. Schultz, D. Kern, H. Schmid, and D. Yee “ Hysteresis of submicron permalloy particulate arrays”, J. Appl. Phys. 63(8), p4237-4239(1988)
66.G. A. Gibson, J. F. Smith, S. Schultz, and D. P. Kern,” Observation of the switching fields of individual Permalloy particles in nanolithographic arrays via magnetic force microscopy“, IEEE Trans. Magn. MAG-27, p5187- (1991)
67.S. Y. Chou and P. B. Fischer, ”Double 15-nm-wide metal gates 10nm apart and 70nm thick on GaAs”, J. Vac Sci. Technol. B 8, p1919-1922(1990)