簡易檢索 / 詳目顯示

研究生: 陳玟妤
Chen, Wen-Yu
論文名稱: 銀奈米粒子細胞毒性對微流道變形紅血球細胞骨架結構之影響
Cytotoxicity of Silver Nanoparticles on Cytoskeleton Structure of Microchannel-Deformed Erythrocytes
指導教授: 張守一
Chang, Shou-Yi
口試委員: 陳柏宇
Chen, Po-Yu
陳盈潔
Chen, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 214
中文關鍵詞: 紅血球原子力顯微鏡細胞骨架銀奈米粒子彈性模數
外文關鍵詞: Atomic Force Microscopy, Cytoskeleton, Erythrocyte, Modulus, Silver Nanoparticles
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紅血球,作為人體內重要的工作細胞,攜帶氧氣至各器官組織並攜出二氧化碳以利於代謝循環,具有極佳的變形能力。銀奈米粒子因具有顯著的抗菌能力,被廣為用於藥物載體、抗菌產品等。然而,過去研究顯示,銀奈米粒子進入人體,會引起細胞毒性,造成紅血球形貌改變,誘發細胞凋亡。但是,關於銀奈米粒子如何改變細胞骨架構造及作用後機械性質變化趨勢仍未被完整闡述,除此之外,銀奈米粒子作用後是否影響到紅血球的變形行為及其骨架結構皆值得被釐清。
    本實驗以銀奈米粒子與紅血球作用,搭配原子力顯微鏡於液相環境下進行影像掃描,觀察作用後細胞形貌及細胞骨架結構變化;並搭配原子力顯微鏡液相力學檢測以行活體細胞彈性模數量測,了解機械性質的變化趨勢。除了研究未變形條件下,銀奈米粒子作用所帶來的影響外,本實驗亦還原紅血球於人體中循環的變形環境,使紅血球被動變形於微流道中,再行細胞骨架結構及活體細胞機械性質檢測。
    研究結果發現,在未變形條件下,銀奈米粒子作用後細胞骨架變粗、密度增加且彈性模數上升;在變形條件下,作用後的細胞骨架出現片狀結構且骨架具有方向性,彈性模數上升趨勢大於正常紅血球。


    Erythrocytes (red blood cells, RBCs) play an essential role in delivering oxygen from lung to the body tissues and facilitating the scrapping of carbon dioxide via metabolism. While navigating through microcirculation vessels and during spleen filtration, erythrocytes display excellent mechanical characteristics. Moreover, different from the bulk materials, nanomaterials have remarkable chemical properties. Among several kinds of nanoparticle (NPs), silver nanoparticles (Ag-NPs) have conspicuous properties of antibacterial, so widely used in drug delivery carriers and antibacterial. However, previous research found that not only nanoparticle is easier to be up taken by cells, but Ag-NPs pose for human health and lead to cytotoxicity, deformability of erythrocytes’ morphology, and then apoptosis. Therefore, it is a vital issue to clarify the interaction between erythrocytes and silver nanoparticles. Further research is requisite on the variation of mechanical properties and the structure of cytoskeleton.
    In this study, exposure erythrocytes of SD rat to 200 μg/ml silver nanoparticles and phosphate buffered solution (PBS) respectively for 24 hours. After that we use atomic force microscopy (AFM) imaging to analyze the morphology and structure of erythrocytes’ cytoskeleton, and quantitative mechanical indentation to correlate structure and mechanical properties of non-fixed RBCs. Moreover, we manufacture microchannel devices simulating the capillary, the narrowest vein in the circulation, in order to investigate the influence on the deformed behavior of non-fixed cytoskeleton.
    This experimental data reveals that the cytoskeleton interacting with Ag-NPs will become wider than with PBS, and the Young’s Modulus will raise with the density of cytoskeleton increasing. While the erythrocytes reacting to Ag-NPs deform in the microchannel, the structure of cytoskeleton becomes flake-shape, and the mechanical properties increase. This result demonstrates that silver nanoparticle will induce oxidation, which not alters the deformability of cytoskeleton, but also destroys the mechanical properties of erythrocytes.

    致謝 I 摘要 III Abstract IV 圖目錄 IX 表目錄 XXXI 壹、前言 1 貳、文獻回顧 3 2-1 紅血球 3 2-1-1 細胞結構 3 2-1-2 細胞骨架 4 2-1-3 影響紅血球細胞骨架的因素 5 2-2 奈米粒子對細胞的影響 16 2-2-1 銀奈米粒子 16 2-2-2 細胞骨架 17 2-2-3 紅血球細胞毒性 18 2-2-4 紅血球形貌與細胞骨架 19 2-2-5 紅血球機械行為 21 2-3 細胞骨架結構分析 41 2-3-1 原子力顯微鏡 44 2-3-2 原子力顯微鏡於生物應用 46 2-4 細胞機械性質 60 2-4-1 原子力顯微鏡 62 2-4-2 原子力顯微鏡於生物應用 64 2-5 研究目的 74 參、實驗步驟 75 3-1 實驗流程 75 3-2 紅血球溶液 77 3-2-1 磷酸鹽緩衝溶液 77 3-2-2 戊二醛溶液 77 3-2-3 紅血球溶液製備 78 3-3 紅血球試片製備 79 3-3-1 紅血球溶液固定處理 79 3-3-2 過氧化物檢測試片處理 79 3-3-3 OM影像觀察試片處理 81 3-3-4 TEM影像觀察試片處理 81 3-3-5 AFM影像觀察試片(未變形)處理 82 3-3-6 AFM壓痕力學分析試片(未變形)處理 82 3-3-7 AFM影像觀察試片(變形後)處理 82 3-3-8 AFM壓痕力學分析試片(變形後)處理 83 3-4 微流道製備 85 3-4-1 光罩設計 85 3-4-2 黃光微影製程 86 3-4-3 反應離子蝕刻製程 86 3-4-4 PDMS翻模 86 3-4-5 鍍覆蛋白膠 86 3-5 紅血球形貌及細胞骨架結構分析 88 3-5-1 穿透式電子顯微鏡 88 3-5-2 原子力顯微鏡 88 3-5-3 結構分析方法 89 3-6 紅血球機械性質分析 93 3-6-1 原子力顯微鏡 93 3-6-2 機械性質分析方法 93 肆、結果與討論 95 4-1 形貌觀察 95 4-1-1 紅血球形貌OM觀察 95 4-1-2 紅血球形貌AFM觀察 97 4-2 細胞骨架結構 106 4-2-1 細胞骨架結構AFM觀察 106 4-2-2 細胞骨架結構綜合分析 112 4-2-3 細胞骨架方向性綜合分析 126 4-3 細胞毒性檢測 133 4-3-1 過氧化物含量檢測 133 4-4 機械性質 135 4-4-1 紅血球之彈性模數 135 4-4-2 彈性模數與骨架結構綜合分析 144 4-5 穿透式顯微鏡 151 4-5-1 紅血球形貌TEM觀察 151 4-5-2 細胞骨架結構TEM觀察 154 伍、結論 159 陸、參考文獻 161 柒、附錄 171

    [1] J. H. Crawford, T. S. Isbell, Z. Huang, S. Shiva, B. K. Chacko, A. N. Schechter, V. M. Darley-Usmar, J. D. Kerby, J. D. Lang, D. Kraus, C. Ho, M. T. Gladwin, and R. P. Patel, “Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation,” Blood, vol. 107, no. 2, pp. 566-574, Jan, 2006.
    [2] E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single Cell Photoacoustic Microscopy: A Review,” Ieee Journal of Selected Topics in Quantum Electronics, vol. 22, no. 3, May-Jun, 2016.
    [3] S. Chien, “Red-Cell Deformability and Its Relevance to Blood-Flow,” Annual Review of Physiology, vol. 49, pp. 177-192, 1987.
    [4] S. E. Lux, “Anatomy of the red cell membrane skeleton: unanswered questions,” Blood, vol. 127, no. 2, pp. 187-199, Jan, 2016.
    [5] S. Li, and D. Qian, Multiscale simulations and mechanics of biological materials: John Wiley & Sons, 2013.
    [6] J. A. Ursitti, D. W. Pumplin, J. B. Wade, and R. J. Bloch, “Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane,” Cell motility and the cytoskeleton, vol. 19, no. 4, pp. 227-243, 1991.
    [7] S.-C. Liu, L. H. Derick, and J. Palek, “Visualization of the hexagonal lattice in the erythrocyte membrane skeleton,” The Journal of cell biology, vol. 104, no. 3, pp. 527-536, 1987.
    [8] A. Ciana, C. Achilli, and G. Minetti, “Spectrin and other membrane-skeletal components in human red blood cells of different age,” Cellular Physiology and Biochemistry, vol. 42, no. 3, pp. 1139-1152, 2017.
    [9] A. Nans, N. Mohandas, and D. L. Stokes, “Native Ultrastructure of the Red Cell Cytoskeleton by Cryo-Electron Tomography,” Biophysical Journal, vol. 101, no. 10, pp. 2341-2350, Nov, 2011.
    [10] D. A. Fletcher, and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature, vol. 463, no. 7280, pp. 485, 2010.
    [11] O. Chaudhuri, S. H. Parekh, and D. A. Fletcher, “Reversible stress softening of actin networks,” Nature, vol. 445, no. 7125, pp. 295, 2007.
    [12] E. Kozlova, A. Chernysh, V. Moroz, V. Sergunova, O. Gudkova, and E. Manchenko, “Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells,” Scientific Reports, vol. 7, Aug, 2017.
    [13] B. Oprisan, I. Stoica, and M. I. Avadanei, “Morphological changes induced in erythrocyte membrane by the antiepileptic treatment: An atomic force microscopy study,” Microscopy Research and Technique, vol. 80, no. 4, pp. 364-373, Apr, 2017.
    [14] M. Dearnley, T. Chu, Y. Zhang, O. Looker, C. Huang, N. Klonis, J. Yeoman, S. Kenny, M. Arora, and J. M. Osborne, “Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages,” Proceedings of the National Academy of Sciences, vol. 113, no. 17, pp. 4800-4805, 2016.
    [15] A. V. Buys, M.-J. Van Rooy, P. Soma, D. Van Papendorp, B. Lipinski, and E. Pretorius, “Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study,” Cardiovascular diabetology, vol. 12, no. 1, pp. 25, 2013.
    [16] L. Shang, K. Nienhaus, and G. U. Nienhaus, “Engineered nanoparticles interacting with cells: size matters,” Journal of nanobiotechnology, vol. 12, no. 1, pp. 5, 2014.
    [17] R. Subbiah, S. B. Jeon, K. Park, S. J. Ahn, and K. Yun, “Investigation of cellular responses upon interaction with silver nanoparticles,” International journal of nanomedicine, vol. 10, no. Spec Iss, pp. 191, 2015.
    [18] S. P. Foy, and V. Labhasetwar, “Oh the irony: Iron as a cancer cause or cure?,” Biomaterials, vol. 32, no. 35, pp. 9155-9158, 2011.
    [19] J. H. Park, G. von Maltzahn, L. Zhang, M. P. Schwartz, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Magnetic iron oxide nanoworms for tumor targeting and imaging,” Advanced Materials, vol. 20, no. 9, pp. 1630-1635, 2008.
    [20] T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” Journal of the American Chemical Society, vol. 123, no. 21, pp. 5164-5165, 2001.
    [21] K. Chaloupka, Y. Malam, and A. M. Seifalian, “Nanosilver as a new generation of nanoproduct in biomedical applications,” Trends in biotechnology, vol. 28, no. 11, pp. 580-588, 2010.
    [22] M. Reifarth, S. Hoeppener, and U. S. Schubert, “Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymer‐Based Nanoparticles,” Advanced Materials, vol. 30, no. 9, pp. 1703704, 2018.
    [23] A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” science, vol. 311, no. 5761, pp. 622-627, 2006.
    [24] Y. Yang, and P. Westerhoff, "Presence in, and release of, nanomaterials from consumer products," Nanomaterial, pp. 1-17: Springer, 2014.
    [25] L. Q. Chen, L. Fang, J. Ling, C. Z. Ding, B. Kang, and C. Z. Huang, “Nanotoxicity of Silver Nanoparticles to Red Blood Cells: Size Dependent Adsorption, Uptake, and Hemolytic Activity,” Chemical Research in Toxicology, vol. 28, no. 3, pp. 501-509, Mar, 2015.
    [26] M. Horie, H. Kato, K. Fujita, S. Endoh, and H. Iwahashi, “In vitro evaluation of cellular response induced by manufactured nanoparticles,” Chemical research in toxicology, vol. 25, no. 3, pp. 605-619, 2011.
    [27] T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav, “Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles,” Frontiers in Microbiology, vol. 7, Nov, 2016.
    [28] M. Mahmoudi, K. Azadmanesh, M. A. Shokrgozar, W. S. Journeay, and S. Laurent, “Effect of nanoparticles on the cell life cycle,” Chemical reviews, vol. 111, no. 5, pp. 3407-3432, 2011.
    [29] D. He, A. M. Jones, S. Garg, A. N. Pham, and T. D. Waite, “Silver nanoparticle− reactive oxygen species interactions: application of a charging− discharging model,” The Journal of Physical Chemistry C, vol. 115, no. 13, pp. 5461-5468, 2011.
    [30] S. J. Soenen, P. Rivera-Gil, J. M. Montenegro, W. J. Parak, S. C. De Smedt, and K. Braeckmans, “Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation,” Nano Today, vol. 6, no. 5, pp. 446-465, Oct, 2011.
    [31] S. K. Mahto, C. Park, T. H. Yoon, and S. W. Rhee, “Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells,” Toxicology in vitro, vol. 24, no. 4, pp. 1070-1077, 2010.
    [32] F. Xu, C. Piett, S. Farkas, M. Qazzaz, and N. I. Syed, “Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons,” Molecular brain, vol. 6, no. 1, pp. 29, 2013.
    [33] N. Pernodet, X. H. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich, “Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts,” Small, vol. 2, no. 6, pp. 766-773, Jun, 2006.
    [34] I. V. Ogneva, S. V. Buravkov, A. N. Shubenkov, and L. B. Buravkova, “Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles,” Nanoscale research letters, vol. 9, no. 1, pp. 284, 2014.
    [35] A. K. Gupta, M. Gupta, S. J. Yarwood, and A. S. G. Curtis, “Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts,” Journal of Controlled Release, vol. 95, no. 2, pp. 197-207, Mar, 2004.
    [36] L. F. de Araújo Vieira, M. P. Lins, I. M. M. N. Viana, J. E. dos Santos, S. Smaniotto, and M. D. dos Santos Reis, “Metallic nanoparticles reduce the migration of human fibroblasts in vitro,” Nanoscale research letters, vol. 12, no. 1, pp. 200, 2017.
    [37] 謝玉瑩, “金及銀奈米顆粒對大鼠紅血球細胞毒性及機械性質影響之研究,” 中興大學材料科學與工程學系所學位論文, pp. 1-126, 2012.
    [38] A. Sinha, T. T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Scientific Reports, vol. 5, May, 2015.
    [39] P. Asharani, S. Sethu, S. Vadukumpully, S. Zhong, C. T. Lim, M. P. Hande, and S. Valiyaveettil, “Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles,” Advanced Functional Materials, vol. 20, no. 8, pp. 1233-1242, 2010.
    [40] 陳彥中, “銀奈米顆粒細胞毒性對大鼠紅血球骨架結構影響之研究,” 中興大學材料科學與工程學系所學位論文, pp. 1-129, 2013.
    [41] 周冠廷, 銀奈米粒子細胞毒性對紅血球細胞骨架結構與彈性模數影響之研究: 國立清華大學材料科學與工程研究所學位論文, 2018.
    [42] M. G. Millholland, R. Chandramohanadas, A. Pizzarro, A. Wehr, H. Shi, C. Darling, C. T. Lim, and D. C. Greenbaum, “The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress,” Molecular & Cellular Proteomics, vol. 10, no. 12, pp. M111. 010678, 2011.
    [43] E. Kozlova, A. Chernysh, V. Sergunova, O. Gudkova, E. Manchenko, and A. Kozlov, “Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes,” Journal of Molecular Recognition, vol. 31, no. 10, Oct, 2018.
    [44] 蔡睿義, “銀奈米粒子細胞毒性對紅血球細胞骨架與機械行為影響之研究,” 中興大學材料科學與工程學系所學位論文, 2015.
    [45] N. H. Reynolds, W. Ronan, E. P. Dowling, P. Owens, R. M. McMeeking, and J. P. McGarry, “On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells,” Biomaterials, vol. 35, no. 13, pp. 4015-4025, 2014.
    [46] T. Svitkina, "Imaging cytoskeleton components by electron microscopy," Cytoskeleton Methods and Protocols, pp. 187-206: Springer, 2009.
    [47] K. Terasawa, T. Taguchi, R. Momota, I. Naito, T. Murakami, and A. Ohtsuka, “Human erythrocytes possess a cytoplasmic endoskeleton containing β-actin and neurofilament protein,” Archives of histology and cytology, vol. 69, no. 5, pp. 329-340, 2006.
    [48] R. Nowakowski, P. Luckham, and P. Winlove, “Imaging erythrocytes under physiological conditions by atomic force microscopy,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1514, no. 2, pp. 170-176, 2001.
    [49] A. Kamruzzahan, F. Kienberger, C. M. Stroh, J. Berg, R. Huss, A. Ebner, R. Zhu, C. Rankl, H. J. Gruber, and P. Hinterdorfer, “Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM,” Biological Chemistry, vol. 385, no. 10, pp. 955-960, 2004.
    [50] H. Shi, Z. Liu, A. Li, J. Yin, A. G. L. Chong, K. S. W. Tan, Y. Zhang, and C. T. Lim, “Life Cycle-Dependent Cytoskeletal Modifications in Plasmodium falciparum Infected Erythrocytes,” Plos One, vol. 8, no. 4, Apr, 2013.
    [51] S.-C. Liu, L. H. Derick, P. Agre, and J. Palek, “Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis,” Blood, vol. 76, no. 1, pp. 198-205, 1990.
    [52] 陳家全, 李家維, 楊瑞森, “生物電子顯微鏡學,” 國科會精儀中心, 2004.
    [53] D. B. Peckys, G. M. Veith, D. C. Joy, and N. De Jonge, “Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope,” PloS one, vol. 4, no. 12, pp. e8214, 2009.
    [54] F. M. Ross, “Opportunities and challenges in liquid cell electron microscopy,” Science, vol. 350, no. 6267, pp. aaa9886, 2015.
    [55] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical review letters, vol. 56, no. 9, pp. 930, 1986.
    [56] P. Eaton, and P. West, Atomic force microscopy: Oxford university press, 2010.
    [57] Y. Gan, “Atomic and subnanometer resolution in ambient conditions by atomic force microscopy,” Surface Science Reports, vol. 64, no. 3, pp. 99-121, 2009.
    [58] 黃英碩, “掃描探針顯微術的原理及應用,” 科儀新知, no. 144, pp. 7-17, 2005.
    [59] F. J. Giessibl, “Advances in atomic force microscopy,” Reviews of modern physics, vol. 75, no. 3, pp. 949, 2003.
    [60] R. Garcia, and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Physical Review B, vol. 60, no. 7, pp. 4961, 1999.
    [61] P. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. Hansma, and C. Prater, “Tapping mode atomic force microscopy in liquids,” Applied Physics Letters, vol. 64, no. 13, pp. 1738-1740, 1994.
    [62] S. Sharma, E. E. Grintsevich, M. L. Phillips, E. Reisler, and J. K. Gimzewski, “Atomic force microscopy reveals drebrin induced remodeling of F-actin with subnanometer resolution,” Nano letters, vol. 11, no. 2, pp. 825-827, 2010.
    [63] Y. Fang, C. Y. Iu, C. N. Lui, Y. Zou, C. K. Fung, H. W. Li, N. Xi, K. K. Yung, and K. W. Lai, “Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration,” Scientific reports, vol. 4, pp. 7074, 2014.
    [64] A. Li, A. H. Mansoor, K. S. W. Tan, and C. T. Lim, “Observations on the internal and surface morphology of malaria infected blood cells using optical and atomic force microscope,” Journal of Microbiological Methods, vol. 66, no. 3, pp. 434-439, Sep, 2006.
    [65] E. Usukura, A. Narita, A. Yagi, S. Ito, and J. Usukura, “An unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy,” Scientific reports, vol. 6, pp. 27472, 2016.
    [66] S. Suresh, J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta biomaterialia, vol. 1, no. 1, pp. 15-30, 2005.
    [67] R. E. Waugh, Y.-S. Huang, B. J. Arif, R. Bauserman, and J. Palis, “Development of membrane mechanical function during terminal stages of primitive erythropoiesis in mice,” Experimental hematology, vol. 41, no. 4, pp. 398-408. e2, 2013.
    [68] Z. Shi, and T. Baumgart, “Membrane tension and peripheral protein density mediate membrane shape transitions,” Nature communications, vol. 6, pp. 5974, 2015.
    [69] R. M. Hochmuth, “Micropipette aspiration of living cells,” Journal of biomechanics, vol. 33, no. 1, pp. 15-22, 2000.
    [70] J. Li, G. Lykotrafitis, M. Dao, and S. Suresh, “Cytoskeletal dynamics of human erythrocyte,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp. 4937-4942, Mar, 2007.
    [71] H. Ito, R. Murakami, S. Sakuma, C. H. D. Tsai, T. Gutsmann, K. Brandenburg, J. M. B. Poschl, F. Arai, M. Kaneko, and M. Tanaka, “Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling,” Scientific Reports, vol. 7, Feb, 2017.
    [72] E. Du, M. Diez-Silva, G. J. Kato, M. Dao, and S. Suresh, “Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis,” Proceedings of the National Academy of Sciences, vol. 112, no. 5, pp. 1422-1427, 2015.
    [73] J. Picot, P. A. Ndour, S. D. Lefevre, W. El Nemer, H. Tawfik, J. Galimand, L. Da Costa, J. A. Ribeil, M. De Montalembert, and V. Brousse, “A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen,” American journal of hematology, vol. 90, no. 4, pp. 339-345, 2015.
    [74] I. Dulinska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymonski, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” Journal of Biochemical and Biophysical Methods, vol. 66, no. 1-3, pp. 1-11, Mar, 2006.
    [75] L. Picas, F. Rico, M. Deforet, and S. Scheuring, “Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability,” ACS nano, vol. 7, no. 2, pp. 1054-1063, 2013.
    [76] D. Kirmizis, and S. Logothetidis, “Atomic force microscopy probing in the measurement of cell mechanics,” International journal of nanomedicine, vol. 5, pp. 137, 2010.
    [77] Y.-W. Chiou, H.-K. Lin, M.-J. Tang, H.-H. Lin, and M.-L. Yeh, “The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment,” PLoS One, vol. 8, no. 10, pp. e77384, 2013.
    [78] A. R. Harris, and G. Charras, “Experimental validation of atomic force microscopy-based cell elasticity measurements,” Nanotechnology, vol. 22, no. 34, pp. 345102, 2011.
    [79] H. W. Su, M. S. Ho, and C. M. Cheng, “Probing characteristics of collagen molecules on various surfaces via atomic force microscopy,” Applied Physics Letters, vol. 100, no. 23, Jun, 2012.
    [80] N. Yeow, R. F. Tabor, and G. Garnier, “Atomic force microscopy: From red blood cells to immunohaematology,” Advances in Colloid and Interface Science, vol. 249, pp. 149-162, Nov, 2017.
    [81] T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, “Atomic force microscopy probing of cell elasticity,” Micron, vol. 38, no. 8, pp. 824-833, 2007.
    [82] J. M. Wallace, “Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone,” Bone, vol. 50, no. 1, pp. 420-427, 2012.
    [83] A. C. Dumitru, M. A. Poncin, L. Conrard, Y. F. Dufrene, D. Tyteca, and D. Alsteens, “Nanoscale membrane architecture of healthy and pathological red blood cells,” Nanoscale Horizons, vol. 3, no. 3, pp. 293-304, May, 2018.
    [84] A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, “Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy,” ACS nano, vol. 10, no. 3, pp. 3365-3374, 2016.
    [85] G. Ciasca, M. Papi, S. Di Claudio, M. Chiarpotto, V. Palmieri, G. Maulucci, G. Nocca, C. Rossi, and M. De Spirito, “Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level,” Nanoscale, vol. 7, no. 40, pp. 17030-17037, 2015.
    [86] Z. Zhou, X. Sun, J. Ma, M. Tong, S. To, A. Wong, and A. Ngan, “Actin cytoskeleton stiffness grades metastatic potential of ovarian carcinoma Hey A8 cells via nanoindentation mapping,” Journal of Biomechanics, vol. 60, pp. 219-226, 2017.
    [87] M. Lekka, M. Fornal, G. Pyka-Fościak, K. Lebed, B. Wizner, T. Grodzicki, and J. Styczeń, “Erythrocyte stiffness probed using atomic force microscope,” Biorheology, vol. 42, no. 4, pp. 307-317, 2005.
    [88] A. Mozhanova, N. Nurgazizov, and A. Bukharaev, “Local elastic properties of biological materials studied by SFM,” Proc. of the SPM-2003.–2003, March, pp. 2-5, 2003.
    [89] J. L. Maciaszek, and G. Lykotrafitis, “Sickle cell trait human erythrocytes are significantly stiffer than normal,” Journal of biomechanics, vol. 44, no. 4, pp. 657-661, 2011.
    [90] K. E. Bremmell, A. Evans, and C. A. Prestidge, “Deformation and nano-rheology of red blood cells: an AFM investigation,” Colloids and Surfaces B: Biointerfaces, vol. 50, no. 1, pp. 43-48, 2006.
    [91] F. Liu, J. Burgess, H. Mizukami, and A. Ostafin, “Sample preparation and imaging of erythrocyte cytoskeleton with the atomic force microscopy,” Cell biochemistry and biophysics, vol. 38, no. 3, pp. 251-270, 2003.
    [92] D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro-and nanoscale patterning,” Nature protocols, vol. 5, no. 3, pp. 491, 2010.
    [93] R. King, “Elastic analysis of some punch problems for a layered medium,” International Journal of Solids and Structures, vol. 23, no. 12, pp. 1657-1664, 1987.
    [94] Q. Zhu, S. Salehyar, P. Cabrales, and R. J. Asaro, “Prospects for human erythrocyte skeleton-bilayer dissociation during splenic flow,” Biophysical journal, vol. 113, no. 4, pp. 900-912, 2017.
    [95] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium mechanics of active cytoskeletal networks,” Science, vol. 315, no. 5810, pp. 370-373, 2007.
    [96] K. Schmoller, P. Fernandez, R. Arevalo, D. Blair, and A. Bausch, “Cyclic hardening in bundled actin networks,” Nature communications, vol. 1, pp. 134, 2010.
    [97] F. Rückerl, M. Lenz, T. Betz, J. Manzi, J.-L. Martiel, M. Safouane, R. Paterski-Boujemaa, L. Blanchoin, and C. Sykes, “Adaptive response of actin bundles under mechanical stress,” Biophysical journal, vol. 113, no. 5, pp. 1072-1079, 2017.
    [98] T. G. Fai, A. Leo-Macias, D. L. Stokes, and C. S. Peskin, “Image-based model of the spectrin cytoskeleton for red blood cell simulation,” Plos Computational Biology, vol. 13, no. 10, Oct, 2017.
    [99] I. V. Pivkin, Z. L. Peng, G. E. Karniadakis, P. A. Buffet, M. Dao, and S. Suresh, “Biomechanics of red blood cells in human spleen and consequences for physiology and disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 28, pp. 7804-7809, Jul, 2016.
    [100] H. Li, L. Lu, X. Li, P. A. Buffet, M. Dao, G. E. Karniadakis, and S. Suresh, “Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders,” Proceedings of the National Academy of Sciences, vol. 115, no. 38, pp. 9574-9579, 2018.
    [101] H. Li, J. Yang, T. T. Chu, R. Naidu, L. Lu, R. Chandramohanadas, M. Dao, and G. E. Karniadakis, “Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes,” Biophysical Journal, vol. 114, no. 8, pp. 2014-2023, Apr, 2018.
    [102] F. J. Kuo, M. S. Ho, J. Dai, and M. H. Fan, “Atomic force microscopy for dynamic observation of human erythrocytes in a microfluidic system,” Rsc Advances, vol. 5, no. 123, pp. 101319-101326, 2015.

    QR CODE