簡易檢索 / 詳目顯示

研究生: 江佩玲
Jiang, Pei Ling
論文名稱: 導電性超奈米微晶鑽石薄膜之製備與用於多巴胺感測之研究
Fabrications of Conductive Ultrananocrystalline Diamond Films and Their Applications on Dopamine Detection
指導教授: 戴念華
Tai, Nyan Hwa
口試委員: 李紫原
張晃猷
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 感測器超奈米微晶鑽石薄膜多巴胺
外文關鍵詞: sensor, UNCD, dopamine
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體中不正常的多巴胺含量與某些疾病息息相關,傳統多巴胺的感測常面臨干擾物和生物膜汙染等問題而失準。本研究以偏壓輔助化學氣相沉積法製備導電性超奈米微晶鑽石(nitrogen-incorporated ultrananocrystalline diamond, NUNCD)薄膜,其方法為在氮氣電漿下,以電漿功率1400 W、基板偏壓-300 V、腔體壓力50 torr的條件成長一小時,所得的NUNCD之電阻率約為63.15 μΩ·cm。接著我們使用此NUNCD做為工作電極,以電化學的方式對多巴胺進行感測,偵測極限可以達到0.32 μM。即使在具有氧化電位相近的干擾物(抗壞血酸及尿酸)環境下,偵測極限依然不受影響。在胎牛血清中,NUNCD對多巴胺的偵測亦能得到良好的線性區間,偵測極限為0.39 μM,僅略差於在磷酸鹽緩衝溶液中的量測值。最後建立多巴胺峰值電流對濃度的檢量線,並實際將微分脈衝伏安法量測所得的電流值,帶入檢量線中,換算待測物所含的多巴胺濃度,將其與實際加入的多巴胺濃度做比較,得到約90-120%的回收率(recovery),顯示本研究所製備的NUNCD電極對多巴胺的感測有相當的可行性。


    Abnormal dopamine level in human body is related to some diseases. However, traditional dopamine sensing methods were confronted with problems such as interference and biofilm-fouling. This study adopted electrochemical method to detect dopamine, and the electrode we used was conductive nitrogen-incorporated ultrananocrystalline diamond (NUNCD) films which were prepared through the biased enhanced growth method. The synthesis conditions for NUNCD were 1400 W plasma power, -300 V applied bias at the substrate, 50 torr chamber pressure, and deposition for 1 hour. The best resistivity of the film was about 63.15 μΩ·cm. For the dopamine detection in the phosphate buffer solution, the detection limit was about 0.32 μM. In addition, detection of dopamine in the presence of ascorbic acid and uric acid were performed and it is found that the detection limit was not affected by the interference of biomolecules and the electrode showed good selectivity. In fetal bovine serum, the electrode also performed excellently with a detection limit of about 0.39 μM. We also built up calibration curves and equations to calculate the content of the dopamine in a blind sample. By substituted the current, obtained from the result of differential pulse voltammetry, into the equation and calculated the dopamine level, we found the dopamine concentration calculated from the equation has the same level with the value we added. Recovery of the electrode is about 90-120%, indicating that the NUNCD film has great potential to be used as an electrode for dopamine sensing.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 3 2.1 多巴胺之感測 3 2.1.1 化學感測器 3 2.1.2 感測器之要素 3 2.1.3 傳統多巴胺感測方法 4 2.1.4 電化學量測 5 2.1.5 生物分子的電化學性質 6 2.1.6 多巴胺量測的困難 9 2.2 鑽石薄膜之簡介 10 2.2.1 鑽石的特性及應用 11 2.2.2 人工鑽石之發展進程 12 2.2.3 基板的選擇 12 2.2.4 基板前處理 13 2.2.5 鑽石薄膜的分類 14 2.2.6 NUCND 15 2.2.7 鑽石的分析方法 17 第三章 實驗分析及方法 28 3.1 鑽石薄膜的成長 28 3.1.1 試片前處理 28 3.1.2 沉積鑽石薄膜 28 3.2 電化學量測 29 3.2.1 伏安法的量測步驟及參數 30 3.2.2 待測樣品的條件 30 3.2.3 回收率的取得 31 3.3 實驗儀器及分析儀器 32 3.3.1 微波電漿輔助化學氣相沉積系統 32 3.3.2 循環伏安法 32 3.3.3 微分脈衝伏安法 33 3.3.4 場發射掃描式電子顯微鏡 34 3.3.5 拉曼光譜分析 34 3.3.6 X射線光電子能譜 35 3.3.7 光放射光譜 35 3.3.8 霍爾量測系統 36 第四章 結果與討論 43 4.1 鑽石薄膜的成長 43 4.1.1 電漿所含成分 43 4.1.2 表面形貌分析 44 4.1.3 拉曼光譜分析 44 4.1.4 XPS 分析 46 4.2 感測生物分子 47 4.2.1 循環伏安法偵測分子的電化學性質 47 4.2.2 循環伏安法和微分脈衝伏安法用於感測生物分子 48 4.2.3 利用微分脈衝伏安法感測多巴胺 49 4.2.4 選擇性測試 50 4.2.5 在胎牛血清中感測多巴胺 52 4.2.6 利用檢量線實際感測多巴胺濃度 53 第五章 結論 69 參考文獻 71

    [1] D. A. Skoog and D. M. West, Principles of instrumental analysis vol. 158. New York: Saunders, 1980.
    [2] T. Qian, C. Yu, X. Zhou, P. Ma, S. Wu, L. Xu, et al., "Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes," Biosensors and Bioelectronics, vol. 58, pp. 237-241, 2014.
    [3] N. J. Ronkainen-Matsuno, J. H. Thomas, H. B. Halsall, and W. R. Heineman, "Electrochemical immunoassay moving into the fast lane," TrAC Trends in Analytical Chemistry, vol. 21, pp. 213-225, 2002.
    [4] D. Grieshaber, R. MacKenzie, J. Voeroes, and E. Reimhult, "Electrochemical biosensors-sensor principles and architectures," Sensors, vol. 8, pp. 1400-1458, 2008.
    [5] S. Pruneanu, A. R. Biris, F. Pogacean, C. Socaci, M. Coros, M. C. Rosu, et al., "The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes," Electrochimica Acta, vol. 154, pp. 197-204, 2015.
    [6] U. E. Majewska, K. Chmurski, K. Biesiada, A. R. Olszyna, and R. Bilewicz, "Dopamine Oxidation at Per (6‐deoxy‐6‐thio)‐α‐Cyclodextrin Monolayer Modified Gold Electrodes," Electroanalysis, vol. 18, pp. 1463-1470, 2006.
    [7] Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, and X.-H. Xia, "Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid," Biosensors and Bioelectronics, vol. 34, pp. 125-131, 2012.
    [8] X. Zhang, S. Yu, W. He, H. Uyama, Q. Xie, L. Zhang, et al., "Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid," Biosensors and Bioelectronics, vol. 55, pp. 446-451, 2014.
    [9] B. Zhang, D. Huang, X. Xu, G. Alemu, Y. Zhang, F. Zhan, et al., "Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes," Electrochimica Acta, vol. 91, pp. 261-266, 2013.
    [10] H. Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao, S. Adhikari, et al., "ZnO Nanowire Arrays on 3D Hierachical Graphene Foam: Biomarker Detection of Parkinson’s Disease," ACS Nano, vol. 8, pp. 1639-1646, 2014.
    [11] S. Zhou, H. Shi, X. Feng, K. Xue, and W. Song, "Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination ofbiomolecules," Biosensors and Bioelectronics, vol. 42, pp. 163-169, 2013.
    [12] X. Zhang, L.-X. Ma, and Y.-C. Zhang, "Electrodeposition of platinum nanosheets on C 60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid," Electrochimica Acta, vol. 177, pp. 118-127, 2015.
    [13] Y. J. Yang and W. Li, "CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite," Biosensors and Bioelectronics, vol. 56, pp. 300-306, 2014.
    [14] H. Hu, Y. Song, M. Feng, and H. Zhan, "Carbon nanomaterials for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid: from one-dimensional to the quasi one-dimensional," Electrochimica Acta, vol. 190, pp. 40-48, 2016.
    [15] M. Hadi and A. Rouhollahi, "Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolytic carbon film electrode," Analytica chimica acta, vol. 721, pp. 55-60, 2012.
    [16] X. Yan, Y. Gu, C. Li, L. Tang, B. Zheng, Y. Li, et al., "Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine," Biosensors and Bioelectronics, vol. 77, pp. 1032-1038, 2016.
    [17] X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou, and Q. Lu, "Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine," Biosensors and Bioelectronics, vol. 57, pp. 232-238, 2014.
    [18] H. Mao, J. Liang, H. Zhang, Q. Pei, D. Liu, S. Wu, et al., "Poly (ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid," Biosensors and Bioelectronics, vol. 70, pp. 289-298, 2015.
    [19] W. Zhang, J. Zheng, J. Shi, Z. Lin, Q. Huang, H. Zhang, et al., "Nafion covered core–shell structured Fe3O4@ graphene nanospheres modified electrode for highly selective detection of dopamine," Analytica chimica acta, vol. 853, pp. 285-290, 2015.
    [20] C. Dincer, R. Ktaich, E. Laubender, J. J. Hees, J. Kieninger, C. E. Nebel, et al., "Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection," Electrochimica Acta, vol. 185, pp. 101-106, 2015.
    [21] F. Ye, C. Feng, J. Jiang, and S. Han, "Simultaneous determination of dopamine, uric acid and nitrite using carboxylated graphene oxide/lanthanum modified electrode," Electrochimica Acta, vol. 182, pp. 935-945, 2015.
    [22] O. Auciello and A. V. Sumant, "Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices," Diamond and related materials, vol. 19, pp. 699-718, 2010.
    [23] K. Yamanouchi, N. Sakurai, and T. Satoh, "SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure," in Ultrasonics Symposium, 1989. Proceedings., IEEE 1989, 1989, pp. 351-354.
    [24] D. J. Garrett, W. Tong, D. A. Simpson, and H. Meffin, "Diamond for neural interfacing: A review," Carbon, vol. 102, pp. 437-454, 2016.
    [25] C. E. Nebel, B. Rezek, D. Shin, H. Uetsuka, and N. Yang, "Diamond for bio-sensor applications," Journal of Physics D: Applied Physics, vol. 40, pp. 6443-6466, 2007.
    [26] J. A. Carlisle, "Diamond films: Precious biosensors," Nature materials, vol. 3, pp. 668-669, 2004.
    [27] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, "Diamond synthesis from gas phase in microwave plasma," Journal of Crystal Growth, vol. 62, pp. 642-644, 1983.
    [28] J. E. Butler and A. V. Sumant, "The CVD of nanodiamond materials," Chemical Vapor Deposition, vol. 14, pp. 145-160, 2008.
    [29] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surfaces," Journal of Crystal Growth, vol. 52, pp. 219-226, 1981.
    [30] H. Liu and D. S. Dandy, Diamond chemical vapor deposition: nucleation and early growth stages. New Jersey: Elsevier, 1996.
    [31] H. Liu and D. S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond and related Materials, vol. 4, pp. 1173-1188, 1995.
    [32] X. Zhong, Y. Chen, N. Tai, I. Lin, J. Hiller, and O. Auciello, "Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping," Journal of Applied Physics, vol. 105, p. 034311, 2009.
    [33] M. Katoh, M. Aoki, and H. Kawarada, "Plasma-enhanced diamond nucleation on Si," Japanese journal of applied physics, vol. 33, pp. L 194-L 196 1994.
    [34] S. Kunuku, K. J. Sankaran, C.-Y. Tsai, W.-H. Chang, N.-H. Tai, K.-C. Leou, et al., "Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications," ACS applied materials & interfaces, vol. 5, pp. 7439-7449, 2013.
    [35] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, et al., "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond and Related Materials, vol. 10, pp. 1952-1961, 2001.
    [36] D. M. Gruen, "Nanocrystalline diamond films 1," Annual Review of Materials Science, vol. 29, pp. 211-259, 1999.
    [37] P. Zapol, M. Sternberg, L. A. Curtiss, T. Frauenheim, and D. M. Gruen, "Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries," Physical Review B, vol. 65, p. 045403, 2001.
    [38] R. Arenal, P. Bruno, D. J. Miller, M. Bleuel, J. Lal, and D. M. Gruen, "Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films," Physical Review B, vol. 75, p. 195431, 2007.
    [39] Y. Chen, N. Tai, and I. Lin, "Substrate temperature effects on the electron field emission properties of nitrogen doped ultra-nanocrystalline diamond," Diamond and Related Materials, vol. 17, pp. 457-461, 2008.
    [40] J. Birrell, J. Gerbi, O. Auciello, J. Gibson, D. Gruen, and J. Carlisle, "Bonding structure in nitrogen doped ultrananocrystalline diamond," Journal of Applied Physics, vol. 93, pp. 5606-5612, 2003.
    [41] J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, "Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond," Applied Physics Letters, vol. 81, pp. 2235-2237, 2002.
    [42] K. Sankaran, J. Kurian, H. Chen, C. Dong, C. Lee, N. Tai, et al., "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma," Journal of Physics D: Applied Physics, vol. 45, p. 365303, 2012.
    [43] S. Bhattacharyya, "Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond," Physical Review B, vol. 70, p. 125412, 2004.
    [44] J. Shalini, Y.-C. Lin, T.-H. Chang, K. J. Sankaran, H.-C. Chen, I.-N. Lin, et al., "Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties," Electrochimica Acta, vol. 92, pp. 9-19, 2013.
    [45] F. Cleri, P. Keblinski, L. Colombo, D. Wolf, and S. Phillpot, "On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond," Europhysics Letters, vol. 46, p. 671, 1999.
    [46] J. Gerbi, O. Auciello, J. Birrell, D. Gruen, B. Alphenaar, and J. Carlisle, "Electrical contacts to ultrananocrystalline diamond," Applied physics letters, vol. 83, pp. 2001-2003, 2003.
    [47] Q. Chen, D. M. Gruen, A. R. Krauss, T. D. Corrigan, M. Witek, and G. M. Swain, "The Structure and Electrochemical Behavior of Nitrogen-Containing Nanocrystalline Diamond Films Deposited from CH4/N2/Ar Mixtures," Journal of The Electrochemical Society, vol. 148, pp. E44-E51, 2001.
    [48] M. Iwaki, S. Sato, K. Takahashi, and H. Sakairi, "Electrical conductivity of nitrogen and argon implanted diamond," Nuclear Instruments and Methods In Physics Research, vol. 209, pp. 1129-1133, 1983.
    [49] Y. V. Pelskov, A. Y. Sakharova, M. Krotova, L. Bouilov, and B. Spitsyn, "Photoelectrochemical properties of semiconductor diamond," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 228, pp. 19-27, 1987.
    [50] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical review B, vol. 61, pp. 14095-14107, 2000.
    [51] R. Pfeiffer, H. Kuzmany, N. Salk, and B. Günther, "Evidence for trans-polyacetylene in nanocrystalline diamond films from H–D isotropic substitution experiments," Applied Physics Letters, vol. 82, pp. 4149-4150, 2003.
    [52] A. Ferrari and J. Robertson, "Origin of the 1 1 5 0− cm− 1 Raman mode in nanocrystalline diamond," Physical Review B, vol. 63, p. 121405, 2001.
    [53] T. Lopez-Rios, E. Sandre, S. Leclercq, and E. Sauvain, "Polyacetylene in diamond films evidenced by surface enhanced Raman scattering," Physical review letters, vol. 76, pp. 4935-4938, 1996.
    [54] H. Kuzmany, R. Pfeiffer, N. Salk, and B. Günther, "The mystery of the 1140 cm− 1 Raman line in nanocrystalline diamond films," Carbon, vol. 42, pp. 911-917, 2004.
    [55] P. W. May, "CVD diamond: a new technology for the future?," Endeavour, vol. 19, pp. 101-106, 1995.
    [56] L.-J. Chen, N.-H. Tai, C.-Y. Lee, and I.-N. Lin, "Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond," Journal of applied physics, vol. 101, p. 064308, 2007.
    [57] K. J. Sankaran, B. R. Huang, A. Saravanan, D. Manoharan, N. H. Tai, and I. Lin, "Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Bias‐Enhanced Microwave N2/CH4‐Plasma Chemical Vapor Deposition," Plasma Processes and Polymers, pp. 419-428, 2015.
    [58] A. Saravanan, B.-R. Huang, K. J. Sankaran, N.-H. Tai, and I.-N. Lin, "Highly Conductive Diamond–Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties," ACS applied materials & interfaces, vol. 7, pp. 14035-14042, 2015.
    [59] T.-H. Chang, P.-Y. Hsieh, S. Kunuku, S.-C. Lou, D. Manoharan, K.-C. Leou, et al., "High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N2-plasma Grown Ultrananocrystalline Diamond Films," ACS applied materials & interfaces, vol. 7, pp. 27526-27538, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE