簡易檢索 / 詳目顯示

研究生: 郭紘安
Kuo, Hung-An
論文名稱: 在時間受限的數據收集中規劃無人機的飛行軌跡以最大化利潤
Profit Maximization for UAV Trajectory Planning in Time-Constrained Data Collection
指導教授: 許健平
Sheu, Jang-Ping
口試委員: 高榮駿
Kao, Jung-Chun
陳裕賢
Chen, Yuh-Shyan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 36
中文關鍵詞: 無人機飛行軌跡收集時間受限的數據利潤最大化
外文關鍵詞: UAV trajectory, time-constrained data collection, profit maximization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文,我們使用無人機 (UAV) 從地面物聯網設備收集數據。每個設備都有一定量的數據可以在特定的時間範圍內發送到無人機。
    我們的目標是規劃無人機的飛行路徑,收集物聯網設備的數據,最大化無人機可以獲得的利潤。由於此一問題是一個NP-hard的問題, 我們提出一個三階段的啟發式算法來解決這個問題。
    在第一階段,我們解決旅行推銷員問題(Traveling-Salesman Problem, TSP) 以找到無人機的飛行軌跡。 在第二階段,我們提出一個演算法,對於不能滿足時間限制的設備,我們可以改變無人機收集資料的順序或將物聯網設備從飛行軌跡中移除。
    第三階段,降低第二階段獲得的無人機飛行距離。
    模擬結果顯示,所提出的算法在總獲利和執行時間方面優於一些基線的方法。


    In this thesis, we use unmanned aerial vehicles (UAVs) to collect data from IoT devices on the ground. Each device has an amount of data that can be sent to the UAV during a specific time window.
    Our objective is to maximize the total profit that the UAV can collect the data from the IoT devices. Since the problem is NP-hard, we propose a heuristic algorithm in three stages to solve the problem.
    We solve the Traveling-Salesman Problem (TSP) problem in the first stage to find the UAV's flying trajectory. In the second stage, we propose an algorithm to change the visiting order or remove IoT devices from the flying trajectory if we cannot satisfy their time constraints.
    In the third stage, we improve the UAV's flying distance established in the second stage.
    The simulation results show that the proposed algorithms outperform some baselines in terms of total profit and execution time.

    Abstract (Chinese) 1 Abstract 2 Contents 3 List of Figures 4 1. Introduction 5 2. Related Work 8 3. System Model and Problem Formulation 11 4. Proposed Algorithm 14 4.1 Find Ending Time Algorithm (FETA) 15 4.2 Pair Exchange Remove Algorithm (PERA) 19 4.3 Flying Distance Optimization 23 5. Simulation Results 27 6. Conclusions 32 Bibliography 33

    [1] Lingyan Bao, Jia Luo, Huiqi Bao, Yuyu Hao, and Mingxiong Zhao. Cooperative computation and cache scheduling for UAV-enabled MEC networks.IEEE Transactions on Green Communications and Networking, 6(2):965–978,2022.
    [2] Cihan Tugrul Cicek. A reinforcement learning algorithm for data collection in UAV-aided iot networks with uncertain time windows. In 2021 IEEE ICC Workshops, pages 1–6, 2021.
    [3] Oussama Ghdiri, Wael Jaafar, Safwan Alfattani, Jihene Ben Abderrazak, and Halim Yanikomeroglu. Energy-efficient multi-UAV data collection for IoT networks with time deadlines. In 2020 IEEE GLOBECOM, pages 1–6, 2020.
    [4] Jie Gong, Tsung-Hui Chang, Chao Shen, and Xiang Chen. Flight time minimization of UAV for data collection over wireless sensor networks. IEEE Journal on Selected Areas in Communications, 36(9):1942–1954, 2018.
    [5] Hongzhi Guo and Jiajia Liu. UAV-enhanced intelligent offloading for internet of things at the edge. IEEE Transactions on Industrial Informatics, 16(4):2737–2746, 2020.
    [6] Huimin Hu, Ke Xiong, Gang Qu, Qiang Ni, Pingyi Fan, and Khaled Ben Letaief. AoI-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks. IEEE Internet of Things Journal, 8(2):1211–1223, 2021.
    [7] Xiaoyan Hu, Kai-Kit Wong, Kun Yang, and Zhongbin Zheng. UAV-assistedrelaying and edge computing: Scheduling and trajectory optimization. IEEE Transactions on Wireless Communications, 18(10):4738–4752, 2019.
    [8] Mushu Li, Nan Cheng, Jie Gao, Yinlu Wang, Lian Zhao, and Xuemin Shen. Energy-efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization. IEEE Transactions on Vehicular Technology, 69(3):3424–3438, 2020.
    [9] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5):1125–1142, 2017.
    [10] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and M´erouane Debbah. Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications. IEEE Transactions on Wireless Communications, 16(11):7574–7589, 2017.
    [11] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Young-Han Nam, and M´erouane Debbah. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys Tutorials, 21(3):2334–2360, 2019.
    [12] Moataz Samir, Sanaa Sharafeddine, Chadi M. Assi, Tri Minh Nguyen, and Ali Ghrayeb. UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Transactions on Wireless Communications, 19(1):34–46, 2020.
    [13] Shuai Shen, Kun Yang, Kezhi Wang, Guopeng Zhang, and Haibo Mei. Number and operation time minimization for multi-UAV-enabled data collection system with time windows. IEEE Internet of Things Journal, 9(12):10149– 10161, 2022.
    [14] Yong Wang, Zhi-Yang Ru, Kezhi Wang, and Pei-Qiu Huang. Joint deployment and task scheduling optimization for large-scale mobile users in multiUAV-enabled mobile edge computing. IEEE Transactions on Cybernetics, 50(9):3984–3997, 2020.
    [15] Tianhao Wu, Jianfeng Liu, Juan Liu, Zhongyi Huang, Hao Wu, Chaorui Zhang, Bo Bai, and Gong Zhang. A novel AI-based framework for AoIoptimal trajectory planning in UAV-assisted wireless sensor networks. IEEE Transactions on Wireless Communications, 21(4):2462–2475, 2022.
    [16] Yu Xu, Tiankui Zhang, Dingcheng Yang, Yuanwei Liu, and Meixia Tao. Joint resource and trajectory optimization for security in UAV-assisted MEC systems. IEEE Transactions on Communications, 69(1):573–588, 2021.
    [17] Zimu Xu, Jiahui Yu, and Weifeng Su. Finding the global optimal solution in dynamic multiple TSPTW with data-driven ACO. In 2021 IEEE SmartWorld/SCALCOM/UIC/ATC/IOP/SCI, pages 41–48, 2021.
    [18] Jianan Yang, Jiajun Chen, and Zelong Yang. Energy-efficient UAV communication with trajectory optimization. In 2021 2nd ICBASE, pages 508–514, 2021.
    [19] Zhaohui Yang, Cunhua Pan, Kezhi Wang, and Mohammad Shikh-Bahaei. Energy efficient resource allocation in UAV-enabled mobile edge computing networks. IEEE Transactions on Wireless Communications, 18(9):4576–4589, 2019.
    [20] Changsheng You and Rui Zhang. 3D trajectory optimization in rician fading for UAV-enabled data harvesting. IEEE Transactions on Wireless Communications, 18(6):3192–3207, 2019.
    [21] Zhe Yu, Yanmin Gong, Shimin Gong, and Yuanxiong Guo. Joint task offloading and resource allocation in UAV-enabled mobile edge computing. IEEE Internet of Things Journal, 7(4):3147–3159, 2020.
    [22] Yong Zeng, Xiaoli Xu, and Rui Zhang. Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Transactions on Wireless Communications, 17(4):2233–2246, 2018.
    [23] Cheng Zhan, Han Hu, Xiufeng Sui, Zhi Liu, and Dusit Niyato. Completion time and energy optimization in the UAV-enabled mobile-edge computing system. IEEE Internet of Things Journal, 7(8):7808–7822, 2020.
    [24] Jiao Zhang, Li Zhou, Fuhui Zhou, Boon-Chong Seet, Haijun Zhang, Zhiping Cai, and Jibo Wei. Computation-efficient offloading and trajectory scheduling for multi-UAV assisted mobile edge computing. IEEE Transactions on Vehicular Technology, 69(2):2114–2125, 2020.
    [25] Conghao Zhou, Hongli He, Peng Yang, Feng Lyu, Wen Wu, Nan Cheng, and Xuemin Shen. Deep RL-based trajectory planning for AoI minimization in UAV-assisted IoT. In 2019 11th International Conference on WCSP, pages1–6, 2019.

    QR CODE