簡易檢索 / 詳目顯示

研究生: 王智永
Chih-yung Wang
論文名稱: 奈米碳管/高分子之微波熔接特性與其應用
Microwave welding of MWNT to polymers and its implications
指導教授: 金重勳
Tsung-shune Chin
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 142
中文關鍵詞: 奈米碳管微波加熱微波熔接可撓曲場發射
外文關鍵詞: carbon nanotube, microwave heating, microwave welding, flexible, field emission
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1991奈米碳管被發現以來,其優良的機械、導電、導熱及化學反應均廣泛的被研究及應用在各類領域之中。在各類應用中,奈米碳管/高分子的複合材的開發亦廣受矚目,將奈米碳管的優異性質應用在高分子基材上,形成軟性電子元件,為目前的研究主流。傳統製作奈米碳管/高分子複合材的方法大都是以熱熔法將碳管與複合材做均勻混和分散,或以黏結劑將碳管黏著在高分子基材上。前者需要高溫製程將高分子熔解,且高分子/碳管間需具備高的介面親和性。後者則需要以接著劑進行黏結、固化。兩種方法均需較長的製作時間,同時容易產生分散不均、接著強度不佳、韌性不足等問題。微波加熱具有超距、快速、材料選擇性、體積加熱、效率佳等特性。過去很多研究都指出微波對奈米碳管之反應影響,但多集中在頻率響應、共振等電磁特性上,少有討論其微波加熱效果。
    本研究的目標分為兩階段,首先是研究多壁奈米碳管的微波加熱特性。實驗中以2.45GHz微波系統加熱多壁奈米碳管證實可使達到900度C以上高溫,再以微波加熱理論探討其微波升溫的機制,及微波加熱後碳管的相關反應。研究確認碳管的微波加熱主要是由於電導損耗的貢獻。利用碳管的瞬間加熱特性,本研究開發了新的奈米碳管/高分子接著製程,稱為「微波熔接」。將碳管分散在高分子基材上,利用微波瞬間加熱數秒鐘,由於碳管的高微波加熱特性,及碳管/高分子兩者間的熱導障礙,碳管釋放的巨熱會瞬間熔融高分子表面,將碳管熔接於高分子上,同時保持高分子基材的完整性。由於是單純的物理性熔接,因此可應用於多類高分子基材如PET、PP、Teflon等。本研究以剝離試驗進行微波熔接之碳管/高分子接著強度的探討,證實其接著強度較傳統黏結劑高達數百倍,同時我們亦研究出利用應力轉移的方式,可使碳管順向排列,有機會應用於異向碳管膜的製作。
    本研究的第二階段是利用微波熔接製程,搭配碳管膠的製作及印刷技術,進行多類可撓曲式軟性電子製作,如可撓曲的單面電阻體、導體及場發射體。以微波熔接製作的軟性電子材不僅碳管耗量少、製程時間快、重要的是可充分展現碳管的優異特性,如高導電性、場發射性質等,而不被傳統製程中的黏結劑所影響,亦不影響高分子基板本身的機械特性,碳管/高分子間足夠的接著強度亦使得其可在撓曲狀態依然維持其相關特性。
    最後,本研究提出後續研究工作,微波熔接或是微波的相關特性,除了多壁奈米碳管的相關研究,亦可利用於其他材料的相關研究上,其反應特性及其特殊的元件特性均是未來值得研究的重點。


    Since the discovery of carbon nanotubes (CNTs) in 1991, there had been a huge number of investigations on its basic properties and applications. Superior properties have been found such as high electric and thermal conductivity, mechanical strength, low threshold voltage for field emission, among many others. Nowadays, CNT/polymer composite gains much attention due to its industrial development especially for flexible electronics. The general access to CNT/polymer composite has been studied such as melt-mixing, spinning, in-situ polymerization and adhesive. Among these, the unavoidable problem was that the poor adhesion between CNT/polymer or the thermal deformation of substrate. On the other hand, microwave is a kind of specific energy that could transfer energy directly to materials via molecular interactions. The unique characteristics of microwave heating such as remotely, quickly, volumetric and material-selective make it much suitable for solving the adhesion problem of CNT/polymer.
    In this study, we first successfully examined the microwave heating of multi-wall carbon nanotube (MWNT) while the maximum temperature could be higher than 900 oC and made clear the heating mechanism. By such characteristic, MWNT can be easily bonded onto polymer substrates under microwave irradiation within a few seconds which we developed and called it microwave welding process. It was shown that the MWNTs are good ‘solders’ of polymer parts with a strength two orders of magnitude higher than those bonded by adhesives.
    The other study was focused on the implication of microwave welding. The microwave welding is a new access to flexible electronic companying with the paste-printing technique. There is no more interlayer such epoxy necessary in MWNT/polymer composite and the MWNT welded on polymer’s surface could fully exhibit its superior properties such electron conduction, field-emission. The flexible device would exhibit better than traditional way due to the strong surface welding without crack or deformation within polymer substrates. Finally, for more rapidly, uniformly and selectively heating characteristics, microwave welding was demonstrated to be of great importance in flexible electronics, such as conductors, resistors and field emitters.

    Microwave welding of MWNT to polymer and its implications Abstract 2 Abstract (Chinese) 3 Acknowledge 5 Table of content 6 List of Tables 10 List of Figures 11 ----------------------------------------------------------------------------------------- Chapter 1 Introduction and motivations 17 Chapter 2 Lectures reviews 21 2-1 Introduction of carbon nanotubes 21 2-1-1 Carbon nanotubes 21 2-1-2 Fabrication of CNT 21 2-2 Characteristic of carbon nanotubes 22 2-2-1 Electric and Thermal conductivity of carbon nanotubes 22 2-2-2 Electric conductivity of carbon nanotubes 24 2-2-3 Field emission from carbon nanotubes 25 2-3 Applications of CNT composite 25 2-3-1 Carbon composite 25 2-3-2 Melt spinning 26 2-3-3 Melt mixing and mechanical stretching for CNT composite 26 2-3-4 In-situ polymerization 27 2-3-5 CNT/polymer interfaces 28 2-4 Microwave heating 31 2-4-1 Microwave 31 2-4-2 Dielectric polarization 33 2-4-3 Dipolar polarization 34 2-4-4 Maxwell - Wagner (Interfacial) polarization 38 2-4-5 Conduction effect 40 2-4-6 Mechanisms of microwave heating 42 2-4-7 Applications of microwave heating 44 2-5 Microwave response of CNT 49 2-5-1 Microwave-assisted synthesis of CNT 49 2-5-2 Microwave-heating on catalyst for synthesis of CNT 50 2-5-3 Microwave-response of CNT 52 2-5-4 Microwave-heating of CNT 54 2-5-5 Microwave-welding of CNT 55 Chap 3 Experimental 57 3-1 Identification of microwave heating of MWNT 60 3-2 Microwave welding of MWNT 62 3-3 Examination of bonding strength of polymers microwave-welded using MWNT 63 3-4 Screen-printing for microwave welding 64 3-5 Applications of microwave welding – flexible resistor 65 3-6 Implications of microwave welding – flexible conductor 66 3-7 Implications of microwave welding – flexible field-emitter 67 Chap 4 Microwave heating and microwave welding of MWNT/polymer .. 70 4-1 The analysis of MWNT 70 4-2 Temperature rise of an MWNT layer during microwave irradiation 72 4-3 Microwave welding of MWNT to polymers 80 4-4 Bonding strength of polymers microwave-welded using MWNT 88 4-5 Stress-alignment of polymers microwave-welded using MWNT91 Chap 5 Implications of microwave welding of MWNT/polymer 96 5-1 screen-printing for microwave welding 96 5-2 Flexible resistor made of microwave-welded MWNT/PC 100 5-3 Flexible conductor made of microwave-welded MWNT-Ag composite/PC . 106 5-4 Flexible field-emitter made of microwave-welded MWNT/PC 117 Chap 6 Conclusions and suggested future works 129 6-1 Brief summaries 129 6-2 Conclusion 132 6-3 Suggested future works 133 Reference 134 Bibliography and Publications list 142

    [1] S. Iijima, Nature 354 56 (1991)
    [2] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76 2511 (1996)
    [3] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269 1550 (1995)
    [4] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Imperial College Press, London, (1998)
    [5] Treacy MMJ, Ebbesen TW, Gibson JM. Nature 381 678 (1996)
    [6] Wong EW, Sheehan PE, Lieber CM. Science 277 1971 (1997)
    [7] P. Avouris., Chem. Phys. 281 429 (2002)
    [8] T. W. Ebbesen and P. M. Ajayan, Nature 358 220 (1992)
    [9] S. Iijima, and T. Ichihashi, Nature 363 603 (1993)
    [10] H. J. Jeong, Y. M. Shin, S. Y. Jeong, Y. C. Choi, Y. S. Park, S. C. Lim, G. S. Park, I. T. Han, J. M. Kim, and Y. H. Lee, Chem. Vapor Deposition, 8 11 (2002)
    [11] C. J. Lee, D. W. Kim, and T. J. Lee, Appl. Phys. Lett. 75 1721 (1999)
    [12] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett. 299 97 (1999)
    [13] G. W. C. Kaye, T. H. Laby, Table of Physical and Chemical Constants, 16th edn. 281 (Longman, London 1995)
    [14] A. Mizel, L. X. Benedict, M. L. Gohen, S. G. Louie, A.Zettl, N. K. Budra, W. P. Beyermann, Phys. Rev. B 60, 275 (1999)
    [15] W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, S. S. Xie, Phys. Rev. B 59 280 (1999)
    [16] Da Jiang Yang, Qing Zhang, George Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Physical Review B 66, 165440 (2002)
    [17] H. Dai, E. W. Wong, C. M. Lieber, Nature (London) 384, 147 (1996)
    [18] M. Bockrath, D. H, Gobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, R. E. Smalley, Science 275, 1922 (1997)
    [19] C. A. Grimes E. C. Dickey, C. Munglem, K. G. Ong, D. Qian, J. appl. Phys. 90 Number 8 (2001)
    [20] C. Zeller, G. M. T. Foley, and F. L. Vogel, J. Mater. Sci. 13 1114 (1978)
    [21] W. A. De Heer, A. Chatelain, D. Ugarte, Science 270 1179 (1995)
    [22] P. G. Collins, A. Zettl, Appl. Phys. Lett. 69 1969 (1999)
    [23] J. M. Bonard, H. Kind, T. Stockli, and L. Nilsson, Solid-State Elect. 45 893 (2001)
    [24] Colbert DT. Plastics Additives Compd 18 (2003)
    [25] D.Qian, E.C. Dickey, R. Andrews, T. Rantell., Appl. Phys. Lett. 76 2868 (2000)
    [26] T.V. Sreekumar, T. Liu, B.G. Min, H.Guo, S.Kumar, R.H. Hauge, R.E. Smalley. Adv. Mater. 16 58 (2004)
    [27] R.H. Baughman, A. A. Zakhidov, W. A. de Heer. Science 297 787 (2002)
    [28] Dalton AB, Collins S, Munˇoz E, Razal JM, Ebron VH, Ferraris JP, et al. Nature. 423 703 (2003)
    [29] Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, et al., NanoLett. 4 459 (2004)
    [30] Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, et al., Adv Mater. 15 1161 (2003)
    [31] Zhong-Ming Li , Sha-Ni Li, Ming-Bo Yang, Rui Huang. Carbon 43 2397 (2005)
    [32] Jin L, Bower C, Zhou O., Appl Phy Lett., 73 1197 (1998)
    [33] Olaf M, Dirk K, Hans W, Christian F, Marc V, Holger W., Polymer 45, 739 (2004)
    [34] Nyan-Hwa Tai, Meng-Kao Yeh, Jia-Hau Liu, Carbon 42 2735 (2004)
    [35] Petra P□otschke, Arup R. Bhattacharyya, Andreas Janke, European Polymer Journal 40 137 (2004)
    [36] Subramoney S., Adv. Mater. 10 1157 (1998)
    [37] Schadler LS, Giannaris SC, Ajayan PM., Appl. Phys. Lett. 73 3842(1998)
    [38] Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE.,Appl. Phys. Lett. 80 2767 (2002)
    [39] Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI. Chem Phys Lett 330 219 (2000)
    [40] Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo., Polymer 46 7418 (2005)
    [41] Dalton AB, Collins S, Munˇoz E, Razal JM, Ebron VH, Ferraris JP, et al., Nature 423 703 (2003)
    [42] Bin Y, Kitanaka M, Zhu D, Matsuo M. Macromoleculs 36 6213 (2003).
    [43] Koganemaru A, Bin Y, Agari Y, Matsuo M. Adv Funct Mater 14 842 (2004)
    [44] Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Compos. Sci. Tech. 63 1637 (2003)
    [45] Weisenberger MC, Grulke EA, Jacques D, Rantell T, Andrews R., J Nanosci Nanotech. 3 6 (2003)
    [46] Bai J., Carbon 41 1309 (2003)
    [47] Nan C-W, Shi Z, Lin Y.,Chem. Phys. Lett. 375 666 (2003)
    [48] A.V. Desai, M.A. Haque., Thin-Walled Structures 43 1787 (2005)
    [49] Gou J, Minaie B, Wang B, Liang Z, Zhang C., Comput Mater Sci 31 225 (2004)
    [50] Lau K-T, Chipara M, Ling H-Y, Hui D. ,Compos Part B Eng 35 95 (2004)
    [51] Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K., Polymer 44 7757 (2003)
    [52] Qian D, Dickey EC., J Microsc 204 39 (2001)
    [53] Collin RE. Foundations for microwave engineering. New York: McGraw-Hill, (1966).
    [54] E.T. Thostenson, T.W. Chou Microwave processing: fundamentals and applications. Composite: Part A 30 1055 (1999)
    [55] Dahl CA, Matthews ME, Marth EH, J. Microwave Power and Electromagnetic energy 15 95 (1980)
    [56] Turner IW, Jolly PG, Drying Technology 9 1209 (1991)
    [57] N.H. Williams. J. Microwave Power 2, 123 (1967).
    [58] V. Daniels. Dielectric Relaxation , Academic Press, London (1967).
    [59] N.E. Hill, W.E. Vaughan, A.H. Price & M. Davies. Van Nostrand Reinhold Co. London (1969)
    [60] J.B. Hasted. Chapman Hall (1973)
    [61] H. Fröhlich. Theory of Dielectrics , Oxford University Press, London (1958)
    [62] P. Debye. Polar Molecules , Chemical Catalog, New York (1929)
    [63] Peelamedu RD, Roy R, Agrawal D, Materials Research Bulletin 36 2723 (2001)
    [64] A. Von Hippel. Dielectric Materials and their Applications MIT Press, (1954)
    [65] P. Debye. Phys. Zs. 36, 100 (1935)
    [66] J.C. Maxwell. A Treatise on Electricity and Magnetism Dover Publications, Dover (1954)
    [67] K.W. Wagner. Arch. Elektrotech. 2, 371 (1914)
    [68]. R.W. Sillars. J. Proc. Inst. Elect. Engrs. 100, 199 (1937)
    [69] B.V. Hamon. Aust. J. Phys. 6, 304 (1953)
    [70] J.S. Dryden & R.J. Meakins. Proc. Phys. Soc. B. 70, 427 (1957)
    [71] M.M.Z. Kharadly & W. Jackson. Proc. Inst. Elect. Eng. 100, 119 (1953)
    [72] W.H. Sutton. Am. Ceram. Soc. Bull. 68, 376 (1989)
    [73] V. Kenkre, L. Skala, M. Weiser & J. Katz. J. Mater. Sci. 26, 2483 (1991)
    [74] G. Kriegsmann. J. Appl. Phys. 1960 ( 1992)
    [75]Barabanenkov YN, Zurk LM, Barabanenkov MY, J. Electromagnetic waves and Applications 9 1393 (1995)
    [76] Kazi E. Haque, Int. J. Miner. Process. 57 1 (1999)
    [77] Brandon JR. Samuels J. Hodgkins WR. Microwave processing of materials III, Materials Research Society Proceeding, San Francisco, 269. Pittsburgh: Materials Research Society, 237 (1992)
    [78] Ramesh D. Peelamedu, Rustum Roy, Dinesh Agrawal, Materials Research Bulletin 36 2723 (2001)
    [79] Ford, J.D., Pei, D.C.T., J. Microwave. Power 22, 61 (1967)
    [80]Chen, T.T., Dutrizac, J.E., Haque, K.E., Wyslouzil, W., Kashyap, S. Can. Metall. Quart. 23 349 (1984)
    [81] McGill, S.L., Walkiewicz, J.W., J. Microwave Power and Electromagnetic energy 223, 175 (1987)
    [82] McGill, S.L., Walkiewicz, J.W., Smyres, G.A.,, In: Sutton, W.H. et al. Eds. , Mat. Res. Soc. Symp. Proc. Reno, NV, M4.6, Vol. 124 (1988)
    [83] Ubaldo Ortiz Me’ndez, Oxana V. Kharissova, Manuel Rodr’iguez. Rev. Adv. Mater. Sci. 5 398 (2003)
    [84] J.H. Huang , C.C. Chuang , C.H. Tsai, Microelectronic Engineering 66 10 (2003)
    [85] J.H. Huang , C.C. Chuang , C.H. Tsai, W. J. Chen, J. Vac. Sci. Technol. B 21 4 (2003)
    [86] Y. Y. Wang, S. Gupta, and R. J. Nemanich, Appl. Phys. Lett. 85 2601 (2004)
    [87] Chen SC, Shih LY, Chang YC, Tu GC, Lin IN , J. Vacuum Sci. & Tech. B 19 1026 (2001)
    [88] Kuo TF, Juang ZY, Tsai CH, Tsau YM, Cheng HF, Lin IN , J. Vacuum Sci. & Tech. B 19 1030 (2001)
    [89] Dong-Myung Yoon, Beom-Jin Yoon, Kun-Hong Lee, Hyung Seok Kim, Chan Gyung Park, Carbon 44 1339 (2006)
    [90] Raju GG. Dielectrics in electric .elds. New York: Marcel Dekker; p. 330 (2003)
    [91] Beom-Jin Yoon, Eun Hwa Hong, Sang Eun Jee, Dong-Myung Yoon, Dae-Seob Shim, Gyu-Young Son, Yoo Jin Lee, Kun-Hong Lee, Hyung Seok Kim, and Chan Gyung Park, J. Am. Chem. Soc. 127, 8235 (2005)
    [92] Hong EH, Lee KH, Oh SH, Park CG, Adv Mater 14 676 (2002)
    [92]Hong EH, Lee KH, Oh SH, Park CG, Adv Func Mater 13 961 (2003)
    [94] L. Duclaux, Carbon 40, 1751 (2002)
    [95] C. Grimes, C. Mungle, D. Kouzoudis, S. Fang, and P. C. Eklund, Chem. Phys. Lett. 319, 460 (2000)
    [96] A. B. Kaiser, K. J. Challis, G. C. McIntosh, G. T. Kim, H. Y. Yu, J. G. Park, S. H. Jhang, and Y. W. Park, Current Appl. Phys. 2, 163 (2002).
    [97] T. I. Jeon, K. J. Kim, C. Kang, S. J. Oh, J. H. Son, K. H. An, D. J. Bae, and Y. H. Lee, Appl. Phys. Lett. 80, 3403 (2002).
    [98] R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett. 83, 2928 (2003).
    [99] C. Grimes, E. Dickey, C. Mungle, K. Ong, and D. Qian, J. Appl. Phys. 90, 4134 (2001).
    [100] P. C. P. Watts, W.-K. Hsu, A. Barnes, and B. Chambers, Adv. Mater. 15, 600 (2003)
    [101] P. C. P. Watts, D. R. Ponnampalam, W.-K. Hsu, A. Barnes, and B. Chambers, Chem. Phys. Lett. 378, 609 (2003).
    [102] Z.-M. Dang, L.-Z. Fan, Y. Shen, and C.-W. Nan, Mater. Sci. Eng., B 103, 140 (2003).
    [103] T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K. H. An, D. J. Bae, and Y. H. Lee, Synth. Met. 135–136, 429 (2003).
    [104] J. H. Wu, L. . Kong, and K. M. Hock, in Proceedings of Electromagnetic
    [105] J. Wu, L. Kong., Appl. Phys. Lett. 84 4956 (2004)
    [106] Matitsine SM, Liu L, Chen LF, Gan YB, Ong CK , Appl. Phys. Lett. 87 No. 016101 (2005)
    [107] P. Petit and E. Jouguelet, J. E. Fischer, A. G. Rinzler and R. E. Smalley, Phys Rev. B 56 9275 (1997)
    [108] T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, Chem. Mater. 15 3969 (2003)
    [109] M. Zhang, S.L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman. Science 309 1215 (2005)
    [110] British Standards:BS 5350 Part 0 1987 General Introduction and BS 5350 Part A1 Adherend Preparation (1976)
    [111] A. ZOSEL. ,Journal of adhesion 34 201 (1991)
    [112] M. J. Shenton, M. C. Lovell-Hoare, G. C. Stevens., J. Phys. D-Appl. Phys. 34 2754 (2001)
    [113] D.J. Yang, S.G. Wang,. Q. Zhang, P.J. Sellin, G. Chen, Phys. Lett. A 329, 207 (2004)
    [114] Da Jiang Yang, Qing Zhang, George Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Phys. Rev. B 66, No.165440 (2002)
    [115] Xu Y, Zhang Y, Suhir E, Wang XW, J. Appl. Phys. 100, 074302 (2006)
    [116] Kim P, Shi L, Majumdar A, McEuen PL, Phys. Rev. Lett. 87, 215502 (2001)
    [117] Yuxiang Qin , Ming Hu, Haiyan Li, Zhisheng Zhang, Qiang Zou, Applied Surface Science 253, 4021 (2007)
    [118] Yi Feng , Hai Long Yuan, Min Zhang, Materials Characterization, 55, 211(2005)
    [119] H.P. Wu, X.J. Wu, M.Y. Ge, G.Q. Zhang , Y.W. Wang, J.Z. Jiang, Composites Science and Technology, 67, 1182 (2007)
    [120] H. M. Kim, K. Kim, C. Y. Lee, and J. Joo, Appl. Phys. Lett., 84, No. 4, (2004).
    [121] Perelaer J, de Gans BJ, Schubert US, Adv. Mater. 18, 2101 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE