簡易檢索 / 詳目顯示

研究生: 許致豪
Hsu, Chih-Hao
論文名稱: 氧化矽(SiOx) /碳氧化矽(SiOxCy)薄膜負極材料在鋰離子電池中的電化學行為
Electrochemical Behaviors of Thin Film Silicon Oxide / Silicon Oxycarbide for Lithium Ion Batteries
指導教授: 蔡哲正
Tsai, Chi-Jen
口試委員: 游萃蓉
林居南
張平
陳翰儀
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 薄膜射頻濺鍍法氧化矽鋰離子電池
外文關鍵詞: Thin film, Radio frequency sputtering, SiOx, Lithium Ion Batteries
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻濺鍍法製備出三種不同化學計量比的氧化矽薄膜(SiOx, x = 0.72,1.23和1.58),作為鋰離子電池的負極材料。利用低略角繞射(GIXRD)來觀察充放電過程中,於不同鋰化電壓時,薄膜所存在的相。三種矽化物,Li2Si2O5,Li6Si2O7和Li4SiO4可出現於充放電過程中。Li2Si2O5結構通常是最容易形成且可逆的結構,至於Li6Si2O7和Li4SiO4則是傾向在高氧計量比時才會形成。在電性循環初期,當鋰化/脫鋰電壓(0.01-1.5 V)時,Li6Si2O7和Li4SiO4都是不可逆產物,若脫鋰電壓上升至3 V時,Li4SiO4是唯一保存下來的矽化物。SiO1.58在電化學過程中,在不同的充放電速率下: 0.1、0.5、1和5 C,可對應產生1129、1044、854和828 mAh/g,這是因為矽化物扮演者鋰離子導體的腳色所致。本研究更進一步在矽鍍膜過程中,增加了碳靶材與其共鍍形成SiOxCy薄膜,其充放電行為與矽化物種類和SiOx薄膜類似,矽為主要電性貢獻來源。然而Li4SiO4結構不存在SiOxCy薄膜中是因為矽原子周遭的氧被碳取代,因此不易形成高氧計量比矽化物。然而在電性表現方面,碳的添加可以增加導電度外,SiC的形成可以增強電性表現,SiO0.66C0.55在不同充放電速率(0.02、0.1、0.2、1 A/g)1000個循環後,電性可分別維持在1027、857、737和647 mAh/g 。


    Silicon oxide thin films featuring different stoichiometries (SiOx, x = 0.72, 1.23, and 1.58) are prepared using radio frequency sputtering, and the electrochemical behaviors of these films as anode materials for lithium ion batteries are investigated. X-ray photoelectron spectroscopy and glazing incidence X-ray diffraction measurements are conducted at different discharge/charge potentials. The results reveal that the main lithium silicates phases observed during lithiation/delithiation processes are Li2Si2O5, Li6Si2O7, and Li4SiO4. Films featuring high O stoichiometries tend to form silicate phases exhibiting high O stoichiometries, which present high redox potentials. The Li2Si2O5 phase is a kinetically favorable phase and primary reversible product of the lithiation process, while the Li6Si2O7 and Li4SiO4 phases appear to be the irreversible products of films presenting high O stoichiometries during the early lithiation/delithiation cycles within the redox potential range of 0.01–1.5 V. However, if the delithiation potential is increased to 3 V, the LiSi2O5 and Li6Si2O7 phases appear to be reversible during the early lithiation/delithiation cycles. The Li4SiO4 phase, which is the main silicate phase of SiO1.58, remains irreversible. The SiO1.58 film presents the specific capacities of 1129, 1044, 854, and 828 mAh/g at the charge/discharge rates of 0.1, 0.5, 1, and 5 C, respectively, after 200 cycles.
    Furthermore, we cosputtered Si and C target to obtain SiOxCy thin film in this study, the electrochemical behaviors of SiOxCy thin film are similar with those of SiOx thin film. Silicon dominate whole lithiation / delithiation reaction process, even in high C stoichiometries SiOxCy thin film ( SiO0.66C0.55). Li4SiO4 phase are inhitbited due to less O atom surround Si. Not only C exist to enhance the conductivity of all SiOxCy thin film, but also to form Silicon carbide in SiO0.66C0.55 thin film. Silicon carbide also reactive with Li ion and provide the minor capacity of the film. The SiO0.66C0.55 film presents the specific capacities of 1027, 857, 737, and 647 mAh/g at the charge/discharge rates of 0.02, 0.1, 0.2, and 1 A/g, respectively, after 1000 cycles.

    目錄 摘要 …………………………………………………………………………………..2 英文摘要………………………………………………………………………………3 致謝……………………………………………………………………………………4 圖目錄…………………………………………………………………………………8 表目錄………………………………………………………………………………..11 Chapter 1. Introduction………………………………………………………………12 1-1鋰離子電池……………………………………………………………………...12 1-2負極材料 ……………………………………………………………………….13 1-3 氧化矽負極(SiO、SiOx)………………………………………………………..17 1-4 氧化矽負極添加導電材料(SiOx + C/Metal)…………………………………...20 Chapter 2. Experimental section……………………………………………….…….25 Chapter 3. Results and Discussion…………………………………………….…......27 3-1-1 SiOx化學計量比分析(stoichiometries )………………………………….…...27 3-1-2 SiOxCy化學計量比分析(stoichiometries )...….……………………….….......31 3-2-1 SiOx 循環伏安法分析(Cyclic voltammetry,CV )………………….…….....34 3-2-2 SiOxCy循環伏安法分析(Cyclic voltammetry,CV )……..………….………35 3-3-1 SiOx結構分析(GIXRD)……………………………………………….……....37 3-3-2 SiOxCy結構分析(GIXRD)……………..……………………………………...44 3-4-1 SiOx 充放電分析(Cycle performance)………………………………………..51 3-4-2 SiOxCy充放電分析(Cycle performance)……..…………………………….....55 3-5-1 SiOx 電子顯微鏡分析(Scanning Electron Microscopy)………………….......61 3-5-2 SiOxCy電子顯微鏡分析(Scanning Electron Microscopy)……..…………......63 3-6-1 SiOx 交流阻抗分析(Electrochemical impedance spectroscopy)……….……..65 3-6-2 SiOxCy交流阻抗分析(Electrochemical impedance spectroscopy)...................68 3-7- Carbon添加對於SiOx和SiOxCy之影響 (碳氧莫爾比接近0.72、1.23為例)…………………………………………...71 Chapter 4. Conclusions………………………………………………………….…...79 Chapter 5. Futrue works..……………………………………………………….……81 Reference…………………………………………………………………………......82

    [1] P. Roy, S.K. Srivastava, Journal of Materials Chemistry A, 3 (2015) 2454-2484.
    [2] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochemical Energy Reviews, 1 (2018) 35-53.
    [3] X. Zhu, D. Yang, J. Li, F. Su, Journal of nanoscience and nanotechnology, 15 (2015) 15-30.
    [4] H. Kim, E.-J. Lee, Y.-K. Sun, Materials Today, 17 (2014) 285-297.
    [5] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Journal of Power Sources, 257 (2014) 421-443.
    [6] D. Ma, Z. Cao, A. Hu, Nano-Micro Letters, 6 (2014) 347-358.
    [7] H.S. Sitinamaluwa, H. Li, K.C. Wasalathilake, A. Wolff, T. Tesfamichael, S. Zhang, C. Yan, Nano Materials Science, (2019).
    [8] Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, Chem. Soc. Rev., 48 (2019) 285-309.
    [9] Y. Ju, J.A. Tang, K. Zhu, Y. Meng, C. Wang, G. Chen, Y. Wei, Y. Gao, Electrochimica Acta, 191 (2016) 411-416.
    [10] M. Li, Y. Yu, J. Li, B. Chen, X. Wu, Y. Tian, P. Chen, Journal of Materials Chemistry A, 3 (2015) 1476-1482.
    [11] X. Luo, H. Zhang, W. Pan, J. Gong, B. Khalid, M. Zhong, H. Wu, Small, 11 (2015) 6009-6012.
    [12] Y. Ren, M. Li, Journal of Power Sources, 306 (2016) 459-466.
    [13] W. Wu, J. Shi, Y. Liang, F. Liu, Y. Peng, H. Yang, Physical Chemistry Chemical Physics, 17 (2015) 13451-13456.
    [14] T. Chen, J. Wu, Q. Zhang, X. Su, Journal of Power Sources, 363 (2017) 126-144.
    [15] X. Meng, H. Huo, Z. Cui, X. Guo, S. Dong, Electrochimica Acta, 283 (2018) 183-189.
    [16] S.B.R.S. Adnan, N.S. Mohamed, K. Norwati, World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5 (2011) 183-186.
    [17] X. Lei, J. Wang, K. Huang, Journal of The Electrochemical Society, 163 (2016) A1401-A1407.
    [18] S. Adnan, N. Mohamed, Materials Research Innovations, 16 (2012) 281-285.
    [19] E. Zhao, X. Liu, H. Zhao, X. Xiao, Z. Hu, Chemical Communications, 51 (2015) 9093-9096.
    [20] B.-C. Yu, Y. Hwa, C.-M. Park, H.-J. Sohn, Journal of Materials Chemistry A, 1 (2013) 4820-4825.
    [21] M. Li, J. Li, K. Li, Y. Zhao, Y. Zhang, D. Gosselink, P. Chen, Journal of Power Sources, 240 (2013) 659-666.
    [22] W.-S. Chang, C.-M. Park, J.-H. Kim, Y.-U. Kim, G. Jeong, H.-J. Sohn, Energy & Environmental Science, 5 (2012) 6895-6899.
    [23] J. Gu, Y. Zeng, X. Feng, X. Wu, C. Zeng, M. Li, Journal of Alloys and Compounds, 662 (2016) 185-192.
    [24] J. Wang, H. Zhao, J. He, C. Wang, J. Wang, Journal of Power Sources, 196 (2011) 4811-4815.
    [25] H. Takezawa, K. Iwamoto, S. Ito, H. Yoshizawa, Journal of Power Sources, 244 (2013) 149-157.
    [26] P.R. Abel, Y.-M. Lin, H. Celio, A. Heller, C.B. Mullins, ACS nano, 6 (2012) 2506-2516.
    [27] R. Miyazaki, N. Ohta, T. Ohnishi, K. Takada, Journal of Power Sources, 329 (2016) 41-49.
    [28] M. Haruta, T. Doi, M. Inaba, Journal of The Electrochemical Society, 166 (2019) A258-A263.
    [29] M. Li, J. Gu, X. Feng, H. He, C. Zeng, Electrochimica Acta, 164 (2015) 163-170.
    [30] H. Zhang, R. Hu, Y. Liu, X. Cheng, J. Liu, Z. Lu, M. Zeng, L. Yang, J. Liu, M. Zhu, Energy Storage Materials, 13 (2018) 257-266.
    [31] W. He, Y. Liang, H. Tian, S. Zhang, Z. Meng, W.-Q. Han, Energy Storage Materials, 8 (2017) 119-126.
    [32] X. Feng, H. Cui, Z. Li, M. Rongrong, N. Yan, Nano, 12 (2017).
    [33] C. Guo, D. Wang, T. Liu, J. Zhu, X. Lang, Journal of Materials Chemistry A, 2 (2014) 3521-3527.
    [34] J. Zhang, X. Zhang, Z. Hou, L. Zhang, C. Li, Journal of Alloys and Compounds, 809 (2019) 151798.
    [35] C.-H. Doh, C.-W. Park, H.-M. Shin, D.-H. Kim, Y.-D. Chung, S.-I. Moon, B.-S. Jin, H.-S. Kim, A. Veluchamy, Journal of Power Sources, 179 (2008) 367-370.
    [36] Q. Si, K. Hanai, T. Ichikawa, M.B. Phillipps, A. Hirano, N. Imanishi, O. Yamamoto, Y. Takeda, Journal of Power Sources, 196 (2011) 9774-9779.
    [37] D. Xu, W. Chen, Y. Luo, H. Wei, C. Yang, X. Cai, Y. Fang, X. Yu, Appl. Surf. Sci., 479 (2019) 980-988.
    [38] L. Shi, C. Pang, S. Chen, M. Wang, K. Wang, Z. Tan, P. Gao, J. Ren, Y. Huang, H. Peng, Z. Liu, Nano Lett., 17 (2017) 3681-3687.
    [39] Z. He, J. Huang, K. Liu, X. Tang, Y. Dai, Journal of Alloys and Compounds, 811 (2019) 151971.
    [40] W. Li, R. Yang, X. Wang, T. Wang, J. Zheng, X. Li, Journal of Power Sources, 221 (2013) 242-246.
    [41] X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, Journal of Power Sources, 306 (2016) 42-48.
    [42] Y. Zhao, J. Wang, Q. He, J. Shi, Z. Zhang, X. Men, D. Yan, H. Wang, ACS Nano, 13 (2019) 5602-5610.
    [43] J. Wang, S. Li, Y. Zhao, J. Shi, L. Lv, H. Wang, Z. Zhang, W. Feng, RSC Advances, 8 (2018) 6660-6666.
    [44] K.S. Lee, Y.N. Lee, Y.S. Yoon, Electrochimica Acta, 147 (2014) 232-240.
    [45] E. Radvanyi, E. De Vito, W. Porcher, S.J.S. Larbi, Journal of Analytical Atomic Spectrometry, 29 (2014) 1120-1131.
    [46] T. Sri Devi Kumari, D. Jeyakumar, T. Prem Kumar, RSC Advances, 3 (2013) 15028-15034.
    [47] K.W. Schroder, H. Celio, L.J. Webb, K.J. Stevenson, The Journal of Physical Chemistry C, 116 (2012) 19737-19747.
    [48] Y. Tang, X. Xia, Y. Yu, S. Shi, J. Chen, Y. Zhang, J. Tu, Electrochimica Acta, 88 (2013) 664-670.
    [49] J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustainable Energy & Fuels, (2020).
    [50] X.D. Huang, F. Zhang, X.F. Gan, Q.A. Huang, J.Z. Yang, P.T. Lai, W.M. Tang, RSC Advances, 8 (2018) 5189-5196.
    [51] H. Zhang, H. Xu, Solid State Ionics, 263 (2014) 23-26.

    QR CODE