研究生: |
張筑芫 Chang, Chu-Yuan |
---|---|
論文名稱: |
促進皮質神經再生過程中的WNT3A基因增強子表觀遺傳修飾及KLF4的抑制效果 Epigenetic regulation of enhancer for induced WNT3A and inhibitory effect of KLF4 during regeneration of injured cortical neurons |
指導教授: |
陳令儀
Chen, Lin-yi |
口試委員: |
張壯榮
Chang, Chuang-Rung 黃兆祺 Hwang, Eric 楊尚訓 Yang, Shang-Hsun 李宜靜 Lee, Yi-Ching |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 139 |
中文關鍵詞: | 皮質神經細胞元 、創傷性腦損傷 、增強子 、組蛋白修飾 、WNT3A蛋白 、KLF4轉錄因子 、神經再生 |
外文關鍵詞: | neuronal regeneration, traumatic brain injury, WNT3A, enhancer regulation, histone modification, cortical neurons, klf4 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷性腦損傷 (TBI) 是一種由外力撞擊或快速頭部晃動所造成的腦組織傷害,並依其嚴重程度可能造成終生失能。根據2019年的預估,每年全球有超過6,900萬人口受TBI所苦。引起TBI的原因已知和國家經濟發展程度、年齡等相關;在已發展國家中,老年人不慎跌倒為引發TBI主要因素,而發展中國家則以交通事故佔多數。然而,由於缺乏對於腦部神經再生機制的了解,目前臨床上並無有效治癒TBI的療法。WNT家族成員配體蛋白 (ligand) 在中樞神經系統發育過程中扮演相當重要的角色,由過去文獻中指出,異常WNT訊息傳遞與神經退化性疾病相關。在本論文前半部,我們比較了受傷的初代皮質神經元於再生過程中數個WNT基因表達量的變化。由於受傷皮質神經元中,WNT3A基因被誘發表達,因此我們分別在體外 (in vitro) 培養初代皮質神經元,以及離體 (ex vivo) 大腦組織切片培養之TBI模式實驗中外加WNT3A重組蛋白,觀察到增加WNT3A有效促進神經軸突再生。根據過去發表的研究指出,TBI 會產生細胞體表觀遺傳基因組重新編程;為了探究WNT3A在皮質神經元再生過程中如何透過表觀遺傳機制進行轉錄調控,我們進行組蛋H3K4me3與H3K27ac的染色質免疫沉澱實驗搭配後續高通量核酸定序 (ChIP-seq),透過讀值分析、資料集蒐集與訓練、ENCODE ChIP-seq資料庫比對,預測可能調控WNT3A基因表達的增強子 (enhancer) 。實驗結果顯示,受傷初代皮質神經元中調控WNT3A基因表達的增強子在神經再生過程中具有組蛋白H3K4me1標記特徵與eRNA轉錄;利用CRISPR/Cas9基因編輯技術進行增強子刪除顯著抑制由受傷所誘發的WNT3A基因表達。此外,由染色體構象捕獲(3C)實驗結果我們發現,神經再生過程中DNA可能透過3D結構轉化改變增強子-啟動子 (promoter) 交互作用,以促進長距離WNT3A基因轉錄調控。為了向上游進一步鑑定可能調控WNT3A表達的轉錄因子,我們在受傷皮質神經元再生過程中組蛋白H3K27ac標記顯著變化的基因組片段以及WNT3A增強子上進行DNA結構模組 (motif) 分析,顯示目標片段上集聚豐富的KLF4/5鏈結模組。KLF轉錄因子家族 (Krüppel-like factors) 在過去文獻中已知影響中樞神經細胞分化,然而KLF家族成員各自對於受傷皮質神經細胞再生過程中所扮演的角色目前缺乏科學驗證。因此,本論文第二部分主要探討KLF4在受傷皮質神經元再生過程中所扮演的角色。由於KLF4蛋白表現量在皮質神經元再生過程中顯著下降,我們在體外TBI模式實驗中過度表現KLF4基因,顯示皮質神經元軸突再生受到抑制;反之,減少KLF4轉譯 (knockdown) 促進皮質神經元軸突再生。此外,初代皮質神經元中過度表現KLF4基因降低WNT3A基因轉錄;反之,外加WNT3A重組蛋白抑制初代皮質神經元中KLF4蛋白表現。 根據實驗結果,我們提出KLF4對於受傷皮質神經元的軸突再生具有抑制效果,並且可能和WNT訊息傳遞進行交互作用。綜合本論文研究結果, 我們認為調控WNT3A/KLF4具有成為TBI治療標靶的潛力。
Traumatic brain injury (TBI) is caused by either external mechanical force or rapid displacement of the brain tissue in the skull. The result is severe damage to brain function. There are about 69 million people suffering TBI-caused morbidity and disability every year worldwide, largely from the cases of falls and motor vehicle collisions. There is currently no treatment for TBI because of limited knowledge about the mechanisms underlying neuronal regeneration. WNT ligands and related proteins have been implicated in neurodevelopment in the central nervous system, and aberrant WNT signaling has been associated with neurodegenerative diseases. In the first part of this dissertation, the expression of WNT genes during regeneration of primary injured cortical neurons was examined. Because endogenous expression of WNT3A gene was induced in injured cortical neurons, recombinant WNT3A protein promoted neuronal regeneration using in vitro TBI model. We found the overexpression of WNT3A increased percentage of gap closure as well as neurite length of neurite re-growth Treating injured organotypic brain slices with recombinant WNT3A enhanced neurite re-growth, demonstrating a promising effect of WNT3A protein on neuronal regeneration via ex vivo TBI model. Since TBI is known to reprogram the epigenome, chromatin immunoprecipitation-sequencing of histone H3K27ac and H3K4me3 was performed to address the transcriptional regulation of WNT3A during neuronal regeneration. Enhancer for WNT3A gene expression was identified based on epigenetic marks. CRISPR/Cas9-mediated editing of this region prevented the induction of WNT3A expression in injured cortical neurons. Chromosome conformation capture assays were performed to examine topological change of DNA architecture during regeneration of injured cortical neurons. We identified and characterized an enhancer highly primed with histone H3K4me1 in response to injury and proposed a promoter-enhancer topological transformation model that regulates the WNT3A gene expression. Krüppel-like factors (KLFs) have been reported to modulate neurite outgrowth in retinal ganglion cells and brain neurons, yet the effect of individual KLF member on regeneration of injured cortical neurons has not been clarified. Since the DNA binding motifs for KLF4/5 at the identified WNT3A enhancer and H3K27ac-marked genomic loci were enriched, we examined the expression of KLF4 protein during neuronal regeneration. Overexpression of KLF4 gene in cortical neurons suppressed neurite re-growth while knockdown of KLF4 promoted neurite re-growth. Notably, overexpression of KLF4 gene in cortical neurons diminished WNT3A expression, whereas treating cortical neurons with recombinant WNT3A reduced KLF4 protein level. Finally, knockdown of KLF5 gene increased neurite length during differentiation of cortical neurons. We thus suggest an inhibitory role of KLF4 protein during regeneration of injured cortical neurons, partly through the interplay with WNT signaling. In addition, KLF5 may be functionally redundant or compensatory for KLF4 effect during neuronal regeneration. Together, data from this dissertation suggest WNT3A-KLF4 axis is a potential therapeutic target for TBI.
1. Langlois, J.A.; Sattin, R.W. Traumatic brain injury in the United States: research and programs of the Centers for Disease Control and Prevention (CDC). J Head Trauma Rehabil 2005, 20, 187-188.
2. Tagliaferri, F.; Compagnone, C.; Korsic, M.; Servadei, F.; Kraus, J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 2006, 148, 255-268; discussion 268, doi:10.1007/s00701-005-0651-y.
3. Roozenbeek, B.; Maas, A.I.; Menon, D.K. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 2013, 9, 231-236, doi:10.1038/nrneurol.2013.22.
4. Fehily, B.; Fitzgerald, M. Repeated mild traumatic brain injury: potential mechanisms of damage. Cell Transplant 2016, 10.3727/096368916X692807, doi:10.3727/096368916X692807.
5. Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M., et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2018, 10.3171/2017.10.JNS17352, 1-18, doi:10.3171/2017.10.JNS17352.
6. Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths - United States, 2007 and 2013. MMWR Surveill Summ 2017, 66, 1-16, doi:10.15585/mmwr.ss6609a1.
7. Min Li, Z.Z., Gongjie Yu and Jianning Zhang. Epidemiology of traumatic brain injury over the world: a systematic review. Austin Neurol & Neurosci. 2016, 1, doi:10.4172/2327-5146.1000275.
8. Hegde, M.N. A coursebook on aphasia and other neurogenic language disorders, 3 ed.; Delmar Cengage Learning: Clifton Park, NY, 2006.
9. Xiong, Y.; Mahmood, A.; Chopp, M. Animal models of traumatic brain injury. Nature reviews. Neuroscience 2013, 14, 128-142, doi:10.1038/nrn3407.
10. Bramlett, H.M.; Dietrich, W.D. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma 2015, 32, 1834-1848, doi:10.1089/neu.2014.3352.
11. Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81-84, doi:10.1016/s0140-6736(74)91639-0.
12. Cassidy, J.D.; Carroll, L.J.; Peloso, P.M.; Borg, J.; von Holst, H.; Holm, L.; Kraus, J.; Coronado, V.G.; Injury, W.H.O.C.C.T.F.o.M.T.B. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004, 28-60.
13. Brain Trauma, F.; American Association of Neurological, S.; Congress of Neurological, S. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007, 24 Suppl 1, S1-106, doi:10.1089/neu.2007.9999.
14. Andriessen, T.M.; Jacobs, B.; Vos, P.E. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2010, 14, 2381-2392, doi:10.1111/j.1582-4934.2010.01164.x.
15. Shultz, S.R.; Bao, F.; Weaver, L.C.; Cain, D.P.; Brown, A. Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. J Neuroinflammation 2013, 10, 26, doi:10.1186/1742-2094-10-26.
16. Bennett, R.E.; Brody, D.L. Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury. J Neurotrauma 2014, 31, 1647-1663, doi:10.1089/neu.2013.3320.
17. Webster, K.M.; Wright, D.K.; Sun, M.; Semple, B.D.; Ozturk, E.; Stein, D.G.; O'Brien, T.J.; Shultz, S.R. Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflammation 2015, 12, 238, doi:10.1186/s12974-015-0457-7.
18. Song, H.; Xu, L.; Zhang, R.; Cao, Z.; Zhang, H.; Yang, L.; Guo, Z.; Qu, Y.; Yu, J. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci Lett 2016, 622, 95-101, doi:10.1016/j.neulet.2016.04.048.
19. McGuire, J.L.; Ngwenya, L.B.; McCullumsmith, R.E. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol Psychiatry 2018, 10.1038/s41380-018-0239-6, doi:10.1038/s41380-018-0239-6.
20. Saijilafu; Zhang, B.Y.; Zhou, F.Q. Signaling pathways that regulate axon regeneration. Neuroscience bulletin 2013, 29, 411-420, doi:10.1007/s12264-013-1357-4.
21. Yiu, G.; He, Z. Glial inhibition of CNS axon regeneration. Nature reviews. Neuroscience 2006, 7, 617-627, doi:10.1038/nrn1956.
22. Giger, R.J.; Hollis, E.R., 2nd; Tuszynski, M.H. Guidance molecules in axon regeneration. Cold Spring Harbor perspectives in biology 2010, 2, a001867, doi:10.1101/cshperspect.a001867.
23. Shen, Y.; Tenney, A.P.; Busch, S.A.; Horn, K.P.; Cuascut, F.X.; Liu, K.; He, Z.; Silver, J.; Flanagan, J.G. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009, 326, 592-596, doi:10.1126/science.1178310.
24. Silver, J.; Schwab, M.E.; Popovich, P.G. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harbor perspectives in biology 2014, 7, a020602, doi:10.1101/cshperspect.a020602.
25. Fawcett, J.W.; Asher, R.A. The glial scar and central nervous system repair. Brain research bulletin 1999, 49, 377-391.
26. Lee, J.K.; Chan, A.F.; Luu, S.M.; Zhu, Y.; Ho, C.; Tessier-Lavigne, M.; Zheng, B. Reassessment of corticospinal tract regeneration in Nogo-deficient mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009, 29, 8649-8654, doi:10.1523/JNEUROSCI.1864-09.2009.
27. Sun, F.; He, Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Current opinion in neurobiology 2010, 20, 510-518, doi:10.1016/j.conb.2010.03.013.
28. Zhou, F.Q.; Snider, W.D. Intracellular control of developmental and regenerative axon growth. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2006, 361, 1575-1592, doi:10.1098/rstb.2006.1882.
29. Filbin, M.T. Recapitulate development to promote axonal regeneration: good or bad approach? Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2006, 361, 1565-1574, doi:10.1098/rstb.2006.1885.
30. Hilton, B.J.; Bradke, F. Can injured adult CNS axons regenerate by recapitulating development? Development 2017, 144, 3417-3429, doi:10.1242/dev.148312.
31. Zhu, R.L.; Cho, K.S.; Guo, C.Y.; Chew, J.; Chen, D.F.; Yang, L. Intrinsic determinants of optic nerve regeneration. Chin Med J (Engl) 2013, 126, 2543-2547.
32. Qiu, J.; Cafferty, W.B.; McMahon, S.B.; Thompson, S.W. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. The Journal of neuroscience : the official journal of the Society for Neuroscience 2005, 25, 1645-1653, doi:10.1523/JNEUROSCI.3269-04.2005.
33. Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M., et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322, 963-966, doi:10.1126/science.1161566.
34. Kiryu-Seo, S.; Kiyama, H. The nuclear events guiding successful nerve regeneration. Frontiers in molecular neuroscience 2011, 4, 53, doi:10.3389/fnmol.2011.00053.
35. Abe, N.; Cavalli, V. Nerve injury signaling. Current opinion in neurobiology 2008, 18, 276-283, doi:10.1016/j.conb.2008.06.005.
36. Snider, W.D.; Zhou, F.Q.; Zhong, J.; Markus, A. Signaling the pathway to regeneration. Neuron 2002, 35, 13-16.
37. Chandran, V.; Coppola, G.; Nawabi, H.; Omura, T.; Versano, R.; Huebner, E.A.; Zhang, A.; Costigan, M.; Yekkirala, A.; Barrett, L., et al. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron 2016, 89, 956-970, doi:10.1016/j.neuron.2016.01.034.
38. Bareyre, F.M.; Garzorz, N.; Lang, C.; Misgeld, T.; Buning, H.; Kerschensteiner, M. In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 6282-6287, doi:10.1073/pnas.1015239108.
39. Bomze, H.M.; Bulsara, K.R.; Iskandar, B.J.; Caroni, P.; Skene, J.H. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature neuroscience 2001, 4, 38-43, doi:10.1038/82881.
40. Seijffers, R.; Mills, C.D.; Woolf, C.J. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience 2007, 27, 7911-7920, doi:10.1523/JNEUROSCI.5313-06.2007.
41. Yang, P.; Yang, Z. Enhancing intrinsic growth capacity promotes adult CNS regeneration. Journal of the neurological sciences 2012, 312, 1-6, doi:10.1016/j.jns.2011.08.037.
42. McConnell, B.B.; Yang, V.W. Mammalian Kruppel-like factors in health and diseases. Physiological reviews 2010, 90, 1337-1381, doi:10.1152/physrev.00058.2009.
43. Dang, D.T.; Pevsner, J.; Yang, V.W. The biology of the mammalian Kruppel-like family of transcription factors. The international journal of biochemistry & cell biology 2000, 32, 1103-1121.
44. Chen, Z.; Lei, T.; Chen, X.; Zhang, J.; Yu, A.; Long, Q.; Long, H.; Jin, D.; Gan, L.; Yang, Z. Porcine KLF gene family: Structure, mapping, and phylogenetic analysis. Genomics 2010, 95, 111-119, doi:10.1016/j.ygeno.2009.11.001.
45. Moore, D.L.; Apara, A.; Goldberg, J.L. Kruppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci 2011, 47, 233-243, doi:10.1016/j.mcn.2011.05.005.
46. Pearson, R.; Fleetwood, J.; Eaton, S.; Crossley, M.; Bao, S. Kruppel-like transcription factors: a functional family. The international journal of biochemistry & cell biology 2008, 40, 1996-2001, doi:10.1016/j.biocel.2007.07.018.
47. Matsumoto, N.; Kubo, A.; Liu, H.; Akita, K.; Laub, F.; Ramirez, F.; Keller, G.; Friedman, S.L. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood 2006, 107, 1357-1365, doi:10.1182/blood-2005-05-1916.
48. Salma, J.; McDermott, J.C. Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 2012, 32, 2790-2803, doi:10.1523/JNEUROSCI.3609-11.2012.
49. Laub, F.; Aldabe, R.; Friedrich, V., Jr.; Ohnishi, S.; Yoshida, T.; Ramirez, F. Developmental expression of mouse Kruppel-like transcription factor KLF7 suggests a potential role in neurogenesis. Developmental biology 2001, 233, 305-318, doi:10.1006/dbio.2001.0243.
50. Veldman, M.B.; Bemben, M.A.; Goldman, D. Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Molecular and cellular neurosciences 2010, 43, 370-383, doi:10.1016/j.mcn.2010.01.004.
51. Veldman, M.B.; Bemben, M.A.; Thompson, R.C.; Goldman, D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Developmental biology 2007, 312, 596-612, doi:10.1016/j.ydbio.2007.09.019.
52. Blackmore, M.G.; Wang, Z.; Lerch, J.K.; Motti, D.; Zhang, Y.P.; Shields, C.B.; Lee, J.K.; Goldberg, J.L.; Lemmon, V.P.; Bixby, J.L. Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 7517-7522, doi:10.1073/pnas.1120684109.
53. Morita, M.; Kobayashi, A.; Yamashita, T.; Shimanuki, T.; Nakajima, O.; Takahashi, S.; Ikegami, S.; Inokuchi, K.; Yamashita, K.; Yamamoto, M., et al. Functional analysis of basic transcription element binding protein by gene targeting technology. Molecular and cellular biology 2003, 23, 2489-2500.
54. Scobie, K.N.; Hall, B.J.; Wilke, S.A.; Klemenhagen, K.C.; Fujii-Kuriyama, Y.; Ghosh, A.; Hen, R.; Sahay, A. Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009, 29, 9875-9887, doi:10.1523/JNEUROSCI.2260-09.2009.
55. Moore, D.L.; Blackmore, M.G.; Hu, Y.; Kaestner, K.H.; Bixby, J.L.; Lemmon, V.P.; Goldberg, J.L. KLF family members regulate intrinsic axon regeneration ability. Science 2009, 326, 298-301, doi:10.1126/science.1175737.
56. Qin, S.; Zhang, C.L. Role of Kruppel-like factor 4 in neurogenesis and radial neuronal migration in the developing cerebral cortex. Molecular and cellular biology 2012, 32, 4297-4305, doi:10.1128/MCB.00838-12.
57. Zhu, S.; Tai, C.; MacVicar, B.A.; Jia, W.; Cynader, M.S. Glutamatergic stimulation triggers rapid Krupple-like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDA-induced caspase-3 activity. Brain research 2009, 1250, 49-62, doi:10.1016/j.brainres.2008.11.013.
58. Shields, J.M.; Yang, V.W. Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins. The Journal of biological chemistry 1997, 272, 18504-18507.
59. Geiman, D.E.; Ton-That, H.; Johnson, J.M.; Yang, V.W. Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic acids research 2000, 28, 1106-1113.
60. Vangapandu, H.; Ai, W. Kruppel like factor 4 (KLF4): a transcription factor with diverse context-dependent functions. Gene Ther Mol Biol 2009, 13A, 194-204.
61. Higaki, Y.; Schullery, D.; Kawata, Y.; Shnyreva, M.; Abrass, C.; Bomsztyk, K. Synergistic activation of the rat laminin gamma1 chain promoter by the gut-enriched Kruppel-like factor (GKLF/KLF4) and Sp1. Nucleic acids research 2002, 30, 2270-2279.
62. Evans, P.M.; Zhang, W.; Chen, X.; Yang, J.; Bhakat, K.K.; Liu, C. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem 2007, 282, 33994-34002, doi:10.1074/jbc.M701847200.
63. Shields, J.M.; Christy, R.J.; Yang, V.W. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. The Journal of biological chemistry 1996, 271, 20009-20017.
64. Garrett-Sinha, L.A.; Eberspaecher, H.; Seldin, M.F.; de Crombrugghe, B. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. The Journal of biological chemistry 1996, 271, 31384-31390.
65. Katz, J.P.; Perreault, N.; Goldstein, B.G.; Lee, C.S.; Labosky, P.A.; Yang, V.W.; Kaestner, K.H. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 2002, 129, 2619-2628.
66. Segre, J.A.; Bauer, C.; Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature genetics 1999, 22, 356-360, doi:10.1038/11926.
67. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663-676, doi:10.1016/j.cell.2006.07.024.
68. Hall, J.; Guo, G.; Wray, J.; Eyres, I.; Nichols, J.; Grotewold, L.; Morfopoulou, S.; Humphreys, P.; Mansfield, W.; Walker, R., et al. Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell stem cell 2009, 5, 597-609, doi:10.1016/j.stem.2009.11.003.
69. Jiang, J.; Chan, Y.S.; Loh, Y.H.; Cai, J.; Tong, G.Q.; Lim, C.A.; Robson, P.; Zhong, S.; Ng, H.H. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 2008, 10, 353-360, doi:10.1038/ncb1698.
70. Tiwari, N.; Meyer-Schaller, N.; Arnold, P.; Antoniadis, H.; Pachkov, M.; van Nimwegen, E.; Christofori, G. Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PloS one 2013, 8, e57329, doi:10.1371/journal.pone.0057329.
71. Qin, S.; Zou, Y.; Zhang, C.L. Cross-talk between KLF4 and STAT3 regulates axon regeneration. Nat Commun 2013, 4, 2633, doi:10.1038/ncomms3633.
72. Foster, K.W.; Frost, A.R.; McKie-Bell, P.; Lin, C.Y.; Engler, J.A.; Grizzle, W.E.; Ruppert, J.M. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer research 2000, 60, 6488-6495.
73. Foster, K.W.; Liu, Z.; Nail, C.D.; Li, X.; Fitzgerald, T.J.; Bailey, S.K.; Frost, A.R.; Louro, I.D.; Townes, T.M.; Paterson, A.J., et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 2005, 24, 1491-1500, doi:10.1038/sj.onc.1208307.
74. Rowland, B.D.; Bernards, R.; Peeper, D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature cell biology 2005, 7, 1074-1082, doi:10.1038/ncb1314.
75. Wu, C.L.; Chou, Y.H.; Chang, Y.J.; Teng, N.Y.; Hsu, H.L.; Chen, L. Interplay between cell migration and neurite outgrowth determines SH2B1beta-enhanced neurite regeneration of differentiated PC12 cells. PloS one 2012, 7, e34999, doi:10.1371/journal.pone.0034999.
76. Schweizer, U.; Gunnersen, J.; Karch, C.; Wiese, S.; Holtmann, B.; Takeda, K.; Akira, S.; Sendtner, M. Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult. The Journal of cell biology 2002, 156, 287-297, doi:10.1083/jcb.200107009.
77. Smith, P.D.; Sun, F.; Park, K.K.; Cai, B.; Wang, C.; Kuwako, K.; Martinez-Carrasco, I.; Connolly, L.; He, Z. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 2009, 64, 617-623, doi:10.1016/j.neuron.2009.11.021.
78. Chang, Y.J.; Chen, K.W.; Chen, C.J.; Lin, M.H.; Sun, Y.J.; Lee, J.L.; Chiu, I.M.; Chen, L. SH2B1beta interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation. Molecular and cellular biology 2014, 34, 1003-1019, doi:10.1128/MCB.00940-13.
79. Salinas, P.C. Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway. Trends Cell Biol 2007, 17, 333-342, doi:10.1016/j.tcb.2007.07.003.
80. Hall, A.C.; Lucas, F.R.; Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 2000, 100, 525-535.
81. Lucas, F.R.; Salinas, P.C. WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Developmental biology 1997, 192, 31-44, doi:10.1006/dbio.1997.8734.
82. Li, H.; Richardson, W.D. Genetics meets epigenetics: HDACs and Wnt signaling in myelin development and regeneration. Nature neuroscience 2009, 12, 815-817, doi:10.1038/nn0709-815.
83. Huang, P.H.; Chen, C.H.; Chou, C.C.; Sargeant, A.M.; Kulp, S.K.; Teng, C.M.; Byrd, J.C.; Chen, C.S. Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Molecular pharmacology 2011, 79, 197-206, doi:10.1124/mol.110.067702.
84. Kretsovali, A.; Hadjimichael, C.; Charmpilas, N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem cells international 2012, 2012, 184154, doi:10.1155/2012/184154.
85. Montgomery, R.L.; Hsieh, J.; Barbosa, A.C.; Richardson, J.A.; Olson, E.N. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proceedings of the National Academy of Sciences of the United States of America 2009, 106, 7876-7881, doi:10.1073/pnas.0902750106.
86. Mulligan, K.A.; Cheyette, B.N. Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol 2012, 7, 774-787, doi:10.1007/s11481-012-9404-x.
87. Gonzalez-Fernandez, C.; Fernandez-Martos, C.M.; Shields, S.D.; Arenas, E.; Javier Rodriguez, F. Wnts are expressed in the spinal cord of adult mice and are differentially induced after injury. J Neurotrauma 2014, 31, 565-581, doi:10.1089/neu.2013.3067.
88. Suh, H.I.; Min, J.; Choi, K.H.; Kim, S.W.; Kim, K.S.; Jeon, S.R. Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats. Acta Neurochir (Wien) 2011, 153, 1003-1010, doi:10.1007/s00701-011-0945-1.
89. Evans, P.M.; Chen, X.; Zhang, W.; Liu, C. KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol Cell Biol 2010, 30, 372-381, doi:10.1128/MCB.00063-09.
90. Zhang, N.; Zhang, J.; Shuai, L.; Zha, L.; He, M.; Huang, Z.; Wang, Z. Kruppel-like factor 4 negatively regulates beta-catenin expression and inhibits the proliferation, invasion and metastasis of gastric cancer. International journal of oncology 2012, 40, 2038-2048, doi:10.3892/ijo.2012.1395.
91. Zhang, W.; Chen, X.; Kato, Y.; Evans, P.M.; Yuan, S.; Yang, J.; Rychahou, P.G.; Yang, V.W.; He, X.; Evers, B.M., et al. Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 2006, 26, 2055-2064, doi:10.1128/MCB.26.6.2055-2064.2006.
92. Huang, K.; Zhang, J.X.; Han, L.; You, Y.P.; Jiang, T.; Pu, P.Y.; Kang, C.S. MicroRNA roles in beta-catenin pathway. Molecular cancer 2010, 9, 252, doi:10.1186/1476-4598-9-252.
93. MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009, 17, 9-26, doi:10.1016/j.devcel.2009.06.016.
94. Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68-75, doi:10.4161/org.4.2.5851.
95. Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20, 781-810, doi:10.1146/annurev.cellbio.20.010403.113126.
96. Kriska, J.; Honsa, P.; Dzamba, D.; Butenko, O.; Kolenicova, D.; Janeckova, L.; Nahacka, Z.; Andera, L.; Kozmik, Z.; Taketo, M.M., et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res 2016, 1651, 73-87, doi:10.1016/j.brainres.2016.09.026.
97. Munji, R.N.; Choe, Y.; Li, G.; Siegenthaler, J.A.; Pleasure, S.J. Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. The Journal of neuroscience : the official journal of the Society for Neuroscience 2011, 31, 1676-1687, doi:10.1523/JNEUROSCI.5404-10.2011.
98. Salinas, P.C.; Zou, Y. Wnt signaling in neural circuit assembly. Annu Rev Neurosci 2008, 31, 339-358, doi:10.1146/annurev.neuro.31.060407.125649.
99. Bayod, S.; Felice, P.; Andres, P.; Rosa, P.; Camins, A.; Pallas, M.; Canudas, A.M. Downregulation of canonical Wnt signaling in hippocampus of SAMP8 mice. Neurobiol Aging 2015, 36, 720-729, doi:10.1016/j.neurobiolaging.2014.09.017.
100. Marzo, A.; Galli, S.; Lopes, D.; McLeod, F.; Podpolny, M.; Segovia-Roldan, M.; Ciani, L.; Purro, S.; Cacucci, F.; Gibb, A., et al. Reversal of Synapse Degeneration by Restoring Wnt Signaling in the Adult Hippocampus. Curr Biol 2016, 10.1016/j.cub.2016.07.024, doi:10.1016/j.cub.2016.07.024.
101. Zhang, L.; Deng, J.; Pan, Q.; Zhan, Y.; Fan, J.B.; Zhang, K.; Zhang, Z. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease. J Genet Genomics 2016, 10.1016/j.jgg.2016.05.002, doi:10.1016/j.jgg.2016.05.002.
102. Rosso, S.B.; Inestrosa, N.C. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 2013, 7, 103, doi:10.3389/fncel.2013.00103.
103. Fernandez-Martos, C.M.; Gonzalez-Fernandez, C.; Gonzalez, P.; Maqueda, A.; Arenas, E.; Rodriguez, F.J. Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS One 2011, 6, e27000, doi:10.1371/journal.pone.0027000.
104. Lambert, C.; Cisternas, P.; Inestrosa, N.C. Role of Wnt Signaling in Central Nervous System Injury. Mol Neurobiol 2016, 53, 2297-2311, doi:10.1007/s12035-015-9138-x.
105. Strand, N.S.; Hoi, K.K.; Phan, T.M.; Ray, C.A.; Berndt, J.D.; Moon, R.T. Wnt/beta-catenin signaling promotes regeneration after adult zebrafish spinal cord injury. Biochem Biophys Res Commun 2016, 477, 952-956, doi:10.1016/j.bbrc.2016.07.006.
106. Herman, P.E.; Papatheodorou, A.; Bryant, S.A.; Waterbury, C.K.M.; Herdy, J.R.; Arcese, A.A.; Buxbaum, J.D.; Smith, J.J.; Morgan, J.R.; Bloom, O. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 2018, 8, 742, doi:10.1038/s41598-017-18757-1.
107. Shimizu, Y.; Ueda, Y.; Ohshima, T. Wnt signaling regulates proliferation and differentiation of radial glia in regenerative processes after stab injury in the optic tectum of adult zebrafish. Glia 2018, 66, 1382-1394, doi:10.1002/glia.23311.
108. Patel, A.K.; Park, K.K.; Hackam, A.S. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience 2017, 343, 372-383, doi:10.1016/j.neuroscience.2016.12.020.
109. Bastakoty, D.; Young, P.P. Wnt/beta-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J 2016, 30, 3271-3284, doi:10.1096/fj.201600502R.
110. Osakada, F.; Ooto, S.; Akagi, T.; Mandai, M.; Akaike, A.; Takahashi, M. Wnt signaling promotes regeneration in the retina of adult mammals. The Journal of neuroscience : the official journal of the Society for Neuroscience 2007, 27, 4210-4219, doi:10.1523/JNEUROSCI.4193-06.2007.
111. Sanges, D.; Romo, N.; Simonte, G.; Di Vicino, U.; Tahoces, A.D.; Fernandez, E.; Cosma, M.P. Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. Cell Rep 2013, 4, 271-286, doi:10.1016/j.celrep.2013.06.015.
112. Yin, Z.S.; Zu, B.; Chang, J.; Zhang, H. Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurol Res 2008, 30, 480-486, doi:10.1179/174313208X284133.
113. Gao, K.; Zhang, T.; Wang, F.; Lv, C. Therapeutic Potential of Wnt-3a in Neurological Recovery after Spinal Cord Injury. Eur Neurol 2019, 81, 197-204, doi:10.1159/000502004.
114. Wei, Z.Z.; Zhang, J.Y.; Taylor, T.M.; Gu, X.; Zhao, Y.; Wei, L. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J Cereb Blood Flow Metab 2018, 38, 404-421, doi:10.1177/0271678X17702669.
115. Matei, N.; Camara, J.; McBride, D.; Camara, R.; Xu, N.; Tang, J.; Zhang, J.H. Intranasal wnt3a Attenuates Neuronal Apoptosis through Frz1/PIWIL1a/FOXM1 Pathway in MCAO Rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 2018, 38, 6787-6801, doi:10.1523/JNEUROSCI.2352-17.2018.
116. Pati, S.; Gibb, S.L.; Nizzi, F.; Jones, B.; Marlowe, M.; Zhao, Y. Wnt3a recapitulates the neuroprotective effects of mesenchymal stem cells and promotes neurocognitive recovery in traumatic brain injury. Cytotherapy 2015, 17, S16, doi:10.1016/j.jcyt.2015.03.338.
117. Zhang, J.Y.; Lee, J.H.; Gu, X.; Wei, Z.Z.; Harris, M.J.; Yu, S.P.; Wei, L. Intranasally Delivered Wnt3a Improves Functional Recovery after Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain. J Neurotrauma 2018, 35, 802-813, doi:10.1089/neu.2016.4871.
118. Ma, T.C.; Willis, D.E. What makes a RAG regeneration associated? Frontiers in molecular neuroscience 2015, 8, 43, doi:10.3389/fnmol.2015.00043.
119. Perry, R.B.; Doron-Mandel, E.; Iavnilovitch, E.; Rishal, I.; Dagan, S.Y.; Tsoory, M.; Coppola, G.; McDonald, M.K.; Gomes, C.; Geschwind, D.H., et al. Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 2012, 75, 294-305, doi:10.1016/j.neuron.2012.05.033.
120. Gong, L.; Wu, J.; Zhou, S.; Wang, Y.; Qin, J.; Yu, B.; Gu, X.; Yao, C. Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats. Biochem Biophys Res Commun 2016, 478, 206-212, doi:10.1016/j.bbrc.2016.07.067.
121. Li, S.; Xue, C.; Yuan, Y.; Zhang, R.; Wang, Y.; Wang, Y.; Yu, B.; Liu, J.; Ding, F.; Yang, Y., et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci Rep 2015, 5, 16888, doi:10.1038/srep16888.
122. Weinhold, B. Epigenetics: the science of change. Environ Health Perspect 2006, 114, A160-167, doi:10.1289/ehp.114-a160.
123. Sandstrom, R.S.; Foret, M.R.; Grow, D.A.; Haugen, E.; Rhodes, C.T.; Cardona, A.E.; Phelix, C.F.; Wang, Y.; Berger, M.S.; Lin, C.H. Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep 2014, 4, 5371, doi:10.1038/srep05371.
124. Santos-Rosa, H.; Schneider, R.; Bannister, A.J.; Sherriff, J.; Bernstein, B.E.; Emre, N.C.; Schreiber, S.L.; Mellor, J.; Kouzarides, T. Active genes are tri-methylated at K4 of histone H3. Nature 2002, 419, 407-411, doi:10.1038/nature01080.
125. Ziller, M.J.; Edri, R.; Yaffe, Y.; Donaghey, J.; Pop, R.; Mallard, W.; Issner, R.; Gifford, C.A.; Goren, A.; Xing, J., et al. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 2015, 518, 355-359, doi:10.1038/nature13990.
126. Wahane, S.; Halawani, D.; Zhou, X.; Zou, H. Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Front Genet 2019, 10, 640, doi:10.3389/fgene.2019.00640.
127. Di Giovanni, S.; Knights, C.D.; Rao, M.; Yakovlev, A.; Beers, J.; Catania, J.; Avantaggiati, M.L.; Faden, A.I. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 2006, 25, 4084-4096, doi:10.1038/sj.emboj.7601292.
128. Gaub, P.; Joshi, Y.; Wuttke, A.; Naumann, U.; Schnichels, S.; Heiduschka, P.; Di Giovanni, S. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 2011, 134, 2134-2148, doi:10.1093/brain/awr142.
129. Puttagunta, R.; Tedeschi, A.; Soria, M.G.; Hervera, A.; Lindner, R.; Rathore, K.I.; Gaub, P.; Joshi, Y.; Nguyen, T.; Schmandke, A., et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 2014, 5, 3527, doi:10.1038/ncomms4527.
130. Gaub, P.; Tedeschi, A.; Puttagunta, R.; Nguyen, T.; Schmandke, A.; Di Giovanni, S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010, 17, 1392-1408, doi:10.1038/cdd.2009.216.
131. Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes (Basel) 2017, 8, doi:10.3390/genes8060148.
132. Barker, S.J.; Tsai, L.H. MethyLock: DNA Demethylation Is the Epigenetic Key to Axon Regeneration. Neuron 2017, 94, 221-223, doi:10.1016/j.neuron.2017.04.006.
133. Heintzman, N.D.; Stuart, R.K.; Hon, G.; Fu, Y.; Ching, C.W.; Hawkins, R.D.; Barrera, L.O.; Van Calcar, S.; Qu, C.; Ching, K.A., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007, 39, 311-318, doi:10.1038/ng1966.
134. Venkatesh, I.; Simpson, M.T.; Coley, D.M.; Blackmore, M.G. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo. Neuroepigenetics 2016, 8, 19-26, doi:10.1016/j.nepig.2016.10.002.
135. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res 2011, 21, 381-395, doi:10.1038/cr.2011.22.
136. Calo, E.; Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol Cell 2013, 49, 825-837, doi:10.1016/j.molcel.2013.01.038.
137. Li, W.; Notani, D.; Rosenfeld, M.G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016, 17, 207-223, doi:10.1038/nrg.2016.4.
138. Villar, D.; Berthelot, C.; Aldridge, S.; Rayner, T.F.; Lukk, M.; Pignatelli, M.; Park, T.J.; Deaville, R.; Erichsen, J.T.; Jasinska, A.J., et al. Enhancer evolution across 20 mammalian species. Cell 2015, 160, 554-566, doi:10.1016/j.cell.2015.01.006.
139. Smale, S.T. Pioneer factors in embryonic stem cells and differentiation. Curr Opin Genet Dev 2010, 20, 519-526, doi:10.1016/j.gde.2010.06.010.
140. Spitz, F.; Furlong, E.E. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012, 13, 613-626, doi:10.1038/nrg3207.
141. Lam, M.T.; Li, W.; Rosenfeld, M.G.; Glass, C.K. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 2014, 39, 170-182, doi:10.1016/j.tibs.2014.02.007.
142. Shlyueva, D.; Stampfel, G.; Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 2014, 15, 272-286, doi:10.1038/nrg3682.
143. Ostuni, R.; Piccolo, V.; Barozzi, I.; Polletti, S.; Termanini, A.; Bonifacio, S.; Curina, A.; Prosperini, E.; Ghisletti, S.; Natoli, G. Latent enhancers activated by stimulation in differentiated cells. Cell 2013, 152, 157-171, doi:10.1016/j.cell.2012.12.018.
144. Kim, T.K.; Hemberg, M.; Gray, J.M. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harbor perspectives in biology 2015, 7, a018622, doi:10.1101/cshperspect.a018622.
145. Liu, Y.; Ding, M.; Gao, Q.; He, A.; Liu, Y.; Mei, H. Current Advances on the Important Roles of Enhancer RNAs in Gene Regulation and Cancer. Biomed Res Int 2018, 2018, 2405351, doi:10.1155/2018/2405351.
146. Ding, M.; Liu, Y.; Liao, X.; Zhan, H.; Liu, Y.; Huang, W. Enhancer RNAs (eRNAs): New Insights into Gene Transcription and Disease Treatment. J Cancer 2018, 9, 2334-2340, doi:10.7150/jca.25829.
147. Cheng, J.H.; Pan, D.Z.; Tsai, Z.T.; Tsai, H.K. Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci Rep 2015, 5, 12648, doi:10.1038/srep12648.
148. Kolovos, P.; Knoch, T.A.; Grosveld, F.G.; Cook, P.R.; Papantonis, A. Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 2012, 5, 1, doi:10.1186/1756-8935-5-1.
149. Meng, H.; Bartholomew, B. Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. J Biol Chem 2018, 293, 13786-13794, doi:10.1074/jbc.R117.813485.
150. Yang, Y.; Su, Z.; Song, X.; Liang, B.; Zeng, F.; Chang, X.; Huang, D. Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Sci Rep 2016, 6, 20961, doi:10.1038/srep20961.
151. Schaukowitch, K.; Joo, J.Y.; Liu, X.; Watts, J.K.; Martinez, C.; Kim, T.K. Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell 2014, 56, 29-42, doi:10.1016/j.molcel.2014.08.023.
152. Bu, H.; Gan, Y.; Wang, Y.; Zhou, S.; Guan, J. A new method for enhancer prediction based on deep belief network. BMC Bioinformatics 2017, 18, 418, doi:10.1186/s12859-017-1828-0.
153. He, Y.; Gorkin, D.U.; Dickel, D.E.; Nery, J.R.; Castanon, R.G.; Lee, A.Y.; Shen, Y.; Visel, A.; Pennacchio, L.A.; Ren, B., et al. Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proceedings of the National Academy of Sciences of the United States of America 2017, 114, E1633-E1640, doi:10.1073/pnas.1618353114.
154. Singh, A.P.; Mishra, S.; Jabin, S. Sequence based prediction of enhancer regions from DNA random walk. Sci Rep 2018, 8, 15912, doi:10.1038/s41598-018-33413-y.
155. Lim, L.W.K.; Chung, H.H.; Chong, Y.L.; Lee, N.K. A survey of recently emerged genome-wide computational enhancer predictor tools. Comput Biol Chem 2018, 74, 132-141, doi:10.1016/j.compbiolchem.2018.03.019.
156. Chao, H.W.; Lai, Y.T.; Lu, Y.L.; Lin, C.L.; Mai, W.; Huang, Y.S. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res 2012, 40, 8484-8498, doi:10.1093/nar/gks598.
157. Chen, C.J.; Shih, C.H.; Chang, Y.J.; Hong, S.J.; Li, T.N.; Wang, L.H.; Chen, L. SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches. J Biol Chem 2015, 290, 6010-6021, doi:10.1074/jbc.M114.603795.
158. Shih, C.H.; Chen, C.J.; Chen, L. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth. PLoS One 2013, 8, e79619, doi:10.1371/journal.pone.0079619.
159. Dahl, J.A.; Collas, P. Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 2007, 25, 1037-1046, doi:10.1634/stemcells.2006-0430.
160. Li, Y.L.; Weng, J.C.; Hsiao, C.C.; Chou, M.T.; Tseng, C.W.; Hung, J.H. PEAT: an intelligent and efficient paired-end sequencing adapter trimming algorithm. BMC Bioinformatics 2015, 16 Suppl 1, S2, doi:10.1186/1471-2105-16-S1-S2.
161. Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10, R25, doi:10.1186/gb-2009-10-3-r25.
162. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078-2079, doi:10.1093/bioinformatics/btp352.
163. Quinlan, A.R.; Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841-842, doi:10.1093/bioinformatics/btq033.
164. Skinner, M.E.; Uzilov, A.V.; Stein, L.D.; Mungall, C.J.; Holmes, I.H. JBrowse: a next-generation genome browser. Genome Res 2009, 19, 1630-1638, doi:10.1101/gr.094607.109.
165. Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W., et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9, R137, doi:10.1186/gb-2008-9-9-r137.
166. Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37, W202-208, doi:10.1093/nar/gkp335.
167. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15-21, doi:10.1093/bioinformatics/bts635.
168. Anders, S.; Pyl, P.T.; Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166-169, doi:10.1093/bioinformatics/btu638.
169. Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28, 511-515, doi:10.1038/nbt.1621.
170. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139-140, doi:10.1093/bioinformatics/btp616.
171. Ernst, J.; Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012, 9, 215-216, doi:10.1038/nmeth.1906.
172. Schmitt, A.D.; Hu, M.; Jung, I.; Xu, Z.; Qiu, Y.; Tan, C.L.; Li, Y.; Lin, S.; Lin, Y.; Barr, C.L., et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep 2016, 17, 2042-2059, doi:10.1016/j.celrep.2016.10.061.
173. Yang, D.; Jang, I.; Choi, J.; Kim, M.S.; Lee, A.J.; Kim, H.; Eom, J.; Kim, D.; Jung, I.; Lee, B. 3DIV: A 3D-genome Interaction Viewer and database. Nucleic Acids Res 2018, 46, D52-D57, doi:10.1093/nar/gkx1017.
174. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57-74, doi:10.1038/nature11247.
175. Tiscornia, G.; Singer, O.; Verma, I.M. Production and purification of lentiviral vectors. Nat Protoc 2006, 1, 241-245, doi:10.1038/nprot.2006.37.
176. Brusehafer, K.; Rees, B.J.; Manshian, B.B.; Doherty, A.T.; O'Donovan, M.R.; Doak, S.H.; Jenkins, G.J. Chromosome breakage induced by the genotoxic agents mitomycin C and cytosine arabinoside is concentration and p53 dependent. Toxicol Sci 2014, 140, 94-102, doi:10.1093/toxsci/kfu058.
177. Liu, R.; Lin, G.; Xu, H. An efficient method for dorsal root ganglia neurons purification with a one-time anti-mitotic reagent treatment. PLoS One 2013, 8, e60558, doi:10.1371/journal.pone.0060558.
178. Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 2013, 8, 1551-1566, doi:10.1038/nprot.2013.092.
179. Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 2017, 45, D183-D189, doi:10.1093/nar/gkw1138.
180. Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11, R25, doi:10.1186/gb-2010-11-3-r25.
181. Stanganello, E.; Zahavi, E.E.; Burute, M.; Smits, J.; Jordens, I.; Maurice, M.M.; Kapitein, L.C.; Hoogenraad, C.C. Wnt Signaling Directs Neuronal Polarity and Axonal Growth. iScience 2019, 13, 318-327, doi:10.1016/j.isci.2019.02.029.
182. Rosenbloom, K.R.; Sloan, C.A.; Malladi, V.S.; Dreszer, T.R.; Learned, K.; Kirkup, V.M.; Wong, M.C.; Maddren, M.; Fang, R.; Heitner, S.G., et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 2013, 41, D56-63, doi:10.1093/nar/gks1172.
183. Davis, C.A.; Hitz, B.C.; Sloan, C.A.; Chan, E.T.; Davidson, J.M.; Gabdank, I.; Hilton, J.A.; Jain, K.; Baymuradov, U.K.; Narayanan, A.K., et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res 2018, 46, D794-D801, doi:10.1093/nar/gkx1081.
184. Casper, J.; Zweig, A.S.; Villarreal, C.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.; Karolchik, D., et al. The UCSC Genome Browser database: 2018 update. Nucleic Acids Res 2018, 46, D762-D769, doi:10.1093/nar/gkx1020.
185. Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res 2002, 12, 996-1006, doi:10.1101/gr.229102.
186. Ong, C.T.; Corces, V.G. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014, 15, 234-246, doi:10.1038/nrg3663.
187. Ren, G.; Jin, W.; Cui, K.; Rodrigez, J.; Hu, G.; Zhang, Z.; Larson, D.R.; Zhao, K. CTCF-Mediated Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene Expression. Mol Cell 2017, 67, 1049-1058 e1046, doi:10.1016/j.molcel.2017.08.026.
188. Zhu, Y.; Sun, L.; Chen, Z.; Whitaker, J.W.; Wang, T.; Wang, W. Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res 2013, 41, 10032-10043, doi:10.1093/nar/gkt826.
189. Wittkopp, P.J.; Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 2011, 13, 59-69, doi:10.1038/nrg3095.
190. Maurano, M.T.; Humbert, R.; Rynes, E.; Thurman, R.E.; Haugen, E.; Wang, H.; Reynolds, A.P.; Sandstrom, R.; Qu, H.; Brody, J., et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012, 337, 1190-1195, doi:10.1126/science.1222794.
191. Williams, S.M.; An, J.Y.; Edson, J.; Watts, M.; Murigneux, V.; Whitehouse, A.J.O.; Jackson, C.J.; Bellgrove, M.A.; Cristino, A.S.; Claudianos, C. An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Mol Psychiatry 2019, 24, 1707-1719, doi:10.1038/s41380-018-0049-x.
192. Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y., et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018, 9, 2941, doi:10.1038/s41467-018-04951-w.
193. Patel, M.B.; Wang, J. The Identification and Interpretation of cis-Regulatory Noncoding Mutations in Cancer. High Throughput 2018, 8, doi:10.3390/ht8010001.
194. van Berkum, N.L.; Lieberman-Aiden, E.; Williams, L.; Imakaev, M.; Gnirke, A.; Mirny, L.A.; Dekker, J.; Lander, E.S. Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 2010, 10.3791/1869, doi:10.3791/1869.
195. Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L.A. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep 2016, 15, 2038-2049, doi:10.1016/j.celrep.2016.04.085.
196. Hansen, A.S.; Cattoglio, C.; Darzacq, X.; Tjian, R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus 2018, 9, 20-32, doi:10.1080/19491034.2017.1389365.
197. Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Iny Stein, T.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M., et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017, 2017, doi:10.1093/database/bax028.
198. Shii, L.; Song, L.; Maurer, K.; Zhang, Z.; Sullivan, K.E. SERPINB2 is regulated by dynamic interactions with pause-release proteins and enhancer RNAs. Mol Immunol 2017, 88, 20-31, doi:10.1016/j.molimm.2017.05.005.
199. Liu, K.; Tedeschi, A.; Park, K.K.; He, Z. Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 2011, 34, 131-152, doi:10.1146/annurev-neuro-061010-113723.
200. Moore, D.L.; Goldberg, J.L. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2011, 71, 1186-1211, doi:10.1002/dneu.20934.
201. He, M.; Zheng, B.; Zhang, Y.; Zhang, X.H.; Wang, C.; Yang, Z.; Sun, Y.; Wu, X.L.; Wen, J.K. KLF4 mediates the link between TGF-beta1-induced gene transcription and H3 acetylation in vascular smooth muscle cells. FASEB J 2015, 29, 4059-4070, doi:10.1096/fj.15-272658.
202. Vitureira, N.; Letellier, M.; White, I.J.; Goda, Y. Differential control of presynaptic efficacy by postsynaptic N-cadherin and beta-catenin. Nature neuroscience 2011, 15, 81-89, doi:10.1038/nn.2995.
203. Zhang, J.; Shemezis, J.R.; McQuinn, E.R.; Wang, J.; Sverdlov, M.; Chenn, A. AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Dev 2013, 8, 7, doi:10.1186/1749-8104-8-7.
204. Park, C.S.; Shen, Y.; Lewis, A.; Lacorazza, H.D. Role of the reprogramming factor KLF4 in blood formation. J Leukoc Biol 2016, 99, 673-685, doi:10.1189/jlb.1RU1215-539R.
205. Park, B.; Chang, S.; Lee, G.J.; Kang, B.; Kim, J.K.; Park, H. Wnt3a disrupts GR-TEAD4-PPARgamma2 positive circuits and cytoskeletal rearrangement in a beta-catenin-dependent manner during early adipogenesis. Cell Death Dis 2019, 10, 16, doi:10.1038/s41419-018-1249-7.
206. Ghaleb, A.M.; Nandan, M.O.; Chanchevalap, S.; Dalton, W.B.; Hisamuddin, I.M.; Yang, V.W. Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 2005, 15, 92-96, doi:10.1038/sj.cr.7290271.
207. Dong, J.T.; Chen, C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 2009, 66, 2691-2706, doi:10.1007/s00018-009-0045-z.
208. Ohtake, Y.; Smith, G.M.; Li, S. Reactive astrocyte scar and axon regeneration: suppressor or facilitator? Neural Regen Res 2016, 11, 1050-1051, doi:10.4103/1673-5374.187022.
209. Anderson, M.A.; Burda, J.E.; Ren, Y.; Ao, Y.; O'Shea, T.M.; Kawaguchi, R.; Coppola, G.; Khakh, B.S.; Deming, T.J.; Sofroniew, M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016, 532, 195-200, doi:10.1038/nature17623.
210. Karki, P.; Smith, K.; Johnson, J., Jr.; Lee, E. Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-alpha in estrogen-induced upregulation of glutamate transporters in astrocytes. Mol Cell Endocrinol 2014, 389, 58-64, doi:10.1016/j.mce.2014.01.010.
211. Rada-Iglesias, A. Is H3K4me1 at enhancers correlative or causative? Nat Genet 2018, 50, 4-5, doi:10.1038/s41588-017-0018-3.
212. Hu, D.; Gao, X.; Morgan, M.A.; Herz, H.M.; Smith, E.R.; Shilatifard, A. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol 2013, 33, 4745-4754, doi:10.1128/MCB.01181-13.
213. Sze, C.C.; Shilatifard, A. MLL3/MLL4/COMPASS Family on Epigenetic Regulation of Enhancer Function and Cancer. Cold Spring Harb Perspect Med 2016, 6, doi:10.1101/cshperspect.a026427.
214. Lee, J.E.; Wang, C.; Xu, S.; Cho, Y.W.; Wang, L.; Feng, X.; Baldridge, A.; Sartorelli, V.; Zhuang, L.; Peng, W., et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2013, 2, e01503, doi:10.7554/eLife.01503.
215. Smith, E.; Shilatifard, A. The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 2010, 40, 689-701, doi:10.1016/j.molcel.2010.11.031.
216. Dorighi, K.M.; Swigut, T.; Henriques, T.; Bhanu, N.V.; Scruggs, B.S.; Nady, N.; Still, C.D., 2nd; Garcia, B.A.; Adelman, K.; Wysocka, J. Mll3 and Mll4 Facilitate Enhancer RNA Synthesis and Transcription from Promoters Independently of H3K4 Monomethylation. Mol Cell 2017, 66, 568-576 e564, doi:10.1016/j.molcel.2017.04.018.
217. Local, A.; Huang, H.; Albuquerque, C.P.; Singh, N.; Lee, A.Y.; Wang, W.; Wang, C.; Hsia, J.E.; Shiau, A.K.; Ge, K., et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet 2018, 50, 73-82, doi:10.1038/s41588-017-0015-6.
218. Herz, H.M. Enhancer deregulation in cancer and other diseases. Bioessays 2016, 38, 1003-1015, doi:10.1002/bies.201600106.
219. Mouse, E.C.; Stamatoyannopoulos, J.A.; Snyder, M.; Hardison, R.; Ren, B.; Gingeras, T.; Gilbert, D.M.; Groudine, M.; Bender, M.; Kaul, R., et al. An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 2012, 13, 418, doi:10.1186/gb-2012-13-8-418.
220. Kwasnieski, J.C.; Fiore, C.; Chaudhari, H.G.; Cohen, B.A. High-throughput functional testing of ENCODE segmentation predictions. Genome Res 2014, 24, 1595-1602, doi:10.1101/gr.173518.114.
221. Visel, A.; Minovitsky, S.; Dubchak, I.; Pennacchio, L.A. VISTA Enhancer Browser--a database of tissue-specific human enhancers. Nucleic Acids Res 2007, 35, D88-92, doi:10.1093/nar/gkl822.
222. Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; Schmidl, C.; Suzuki, T., et al. An atlas of active enhancers across human cell types and tissues. Nature 2014, 507, 455-461, doi:10.1038/nature12787.
223. Gao, T.; He, B.; Liu, S.; Zhu, H.; Tan, K.; Qian, J. EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics 2016, 32, 3543-3551, doi:10.1093/bioinformatics/btw495.
224. Gao, T.; Qian, J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res 2020, 48, D58-D64, doi:10.1093/nar/gkz980.
225. Firpi, H.A.; Ucar, D.; Tan, K. Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics 2010, 26, 1579-1586, doi:10.1093/bioinformatics/btq248.
226. Rajagopal, N.; Xie, W.; Li, Y.; Wagner, U.; Wang, W.; Stamatoyannopoulos, J.; Ernst, J.; Kellis, M.; Ren, B. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput Biol 2013, 9, e1002968, doi:10.1371/journal.pcbi.1002968.
227. Kleftogiannis, D.; Kalnis, P.; Bajic, V.B. DEEP: a general computational framework for predicting enhancers. Nucleic Acids Res 2015, 43, e6, doi:10.1093/nar/gku1058.
228. Huang, F.; Shen, J.; Guo, Q.; Shi, Y. eRFSVM: a hybrid classifier to predict enhancers-integrating random forests with support vector machines. Hereditas 2016, 153, 6, doi:10.1186/s41065-016-0012-2.
229. Wu, C.; Chen, J.; Liu, Y.; Hu, X. Improved Prediction of Regulatory Element Using Hybrid Abelian Complexity Features with DNA Sequences. Int J Mol Sci 2019, 20, doi:10.3390/ijms20071704.
230. Yang, B.; Liu, F.; Ren, C.; Ouyang, Z.; Xie, Z.; Bo, X.; Shu, W. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics 2017, 33, 1930-1936, doi:10.1093/bioinformatics/btx105.
231. Le, N.Q.K.; Yapp, E.K.Y.; Ho, Q.T.; Nagasundaram, N.; Ou, Y.Y.; Yeh, H.Y. iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou's 5-step rule and word embedding. Anal Biochem 2019, 571, 53-61, doi:10.1016/j.ab.2019.02.017.
232. Bu, H.; Hao, J.; Gan, Y.; Zhou, S.; Guan, J. DEEPSEN: a convolutional neural network based method for super-enhancer prediction. BMC Bioinformatics 2019, 20, 598, doi:10.1186/s12859-019-3180-z.
233. Zehnder, T.; Benner, P.; Vingron, M. Predicting enhancers in mammalian genomes using supervised hidden Markov models. BMC Bioinformatics 2019, 20, 157, doi:10.1186/s12859-019-2708-6.
234. Pott, S.; Lieb, J.D. What are super-enhancers? Nat Genet 2015, 47, 8-12, doi:10.1038/ng.3167.
235. Stower, H. Gene expression: Super enhancers. Nat Rev Genet 2013, 14, 367, doi:10.1038/nrg3496.
236. Loven, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013, 153, 320-334, doi:10.1016/j.cell.2013.03.036.
237. Whyte, W.A.; Orlando, D.A.; Hnisz, D.; Abraham, B.J.; Lin, C.Y.; Kagey, M.H.; Rahl, P.B.; Lee, T.I.; Young, R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013, 153, 307-319, doi:10.1016/j.cell.2013.03.035.
238. Hnisz, D.; Abraham, B.J.; Lee, T.I.; Lau, A.; Saint-Andre, V.; Sigova, A.A.; Hoke, H.A.; Young, R.A. Super-enhancers in the control of cell identity and disease. Cell 2013, 155, 934-947, doi:10.1016/j.cell.2013.09.053.
239. Talukder, A.; Saadat, S.; Li, X.; Hu, H. EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction. Bioinformatics 2019, 35, 3877-3883, doi:10.1093/bioinformatics/btz641.
240. Gaffney, D.J. Mapping and predicting gene-enhancer interactions. Nat Genet 2019, 51, 1662-1663, doi:10.1038/s41588-019-0540-6.
241. Gao, T.; Qian, J. EAGLE: An algorithm that utilizes a small number of genomic features to predict tissue/cell type-specific enhancer-gene interactions. PLoS Comput Biol 2019, 15, e1007436, doi:10.1371/journal.pcbi.1007436.
242. Dong, X. Current Strategies for Brain Drug Delivery. Theranostics 2018, 8, 1481-1493, doi:10.7150/thno.21254.
243. Mann, A.P.; Scodeller, P.; Hussain, S.; Joo, J.; Kwon, E.; Braun, G.B.; Molder, T.; She, Z.G.; Kotamraju, V.R.; Ranscht, B., et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun 2016, 7, 11980, doi:10.1038/ncomms11980.
244. Bharadwaj, V.N.; Nguyen, D.T.; Kodibagkar, V.D.; Stabenfeldt, S.E. Nanoparticle-Based Therapeutics for Brain Injury. Adv Healthc Mater 2018, 7, doi:10.1002/adhm.201700668.
245. Pardridge, W.M. Targeted delivery of protein and gene medicines through the blood-brain barrier. Clin Pharmacol Ther 2015, 97, 347-361, doi:10.1002/cpt.18.
246. Pandey, P.K.; Sharma, A.K.; Gupta, U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016, 4, e1129476, doi:10.1080/21688370.2015.1129476.
247. Zhao, Y.; Gibb, S.L.; Zhao, J.; Moore, A.N.; Hylin, M.J.; Menge, T.; Xue, H.; Baimukanova, G.; Potter, D.; Johnson, E.M., et al. Wnt3a, a Protein Secreted by Mesenchymal Stem Cells Is Neuroprotective and Promotes Neurocognitive Recovery Following Traumatic Brain Injury. Stem Cells 2016, 34, 1263-1272, doi:10.1002/stem.2310.
248. El-Amouri, S.S.; Cao, P.; Miao, C.; Pan, D. Secreted luciferase for in vivo evaluation of systemic protein delivery in mice. Mol Biotechnol 2013, 53, 63-73, doi:10.1007/s12033-012-9519-6.