簡易檢索 / 詳目顯示

研究生: 鍾興陵
論文名稱: 聚甲基丙烯酸甲酯(PMMA)中張裂型裂縫成長方向的統計預測
指導教授: 蔣長榮
Chiang, Chun-Ron
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 聚甲基丙烯酸甲酯張裂型概率方程式
外文關鍵詞: PMMA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究的材料為聚甲基丙烯酸甲酯(PMMA),俗稱壓克力。目的在探討一含裂縫之PMMA平板,受張裂型負載模式(Mode I)時,在不同溫度條件下,裂縫成長方向的概率。為了更貼近不同溫度時的材料性質,故採用ANSYS非線性分析中的多線性模型,以多段直線來逼近實際的應力應變曲線。並選用隨動性硬化規則(Kinematic Hardening)來進行模擬。在不同溫度條件下,以裂縫尖端附近之塑性區發展範圍及塑性應變量或應力狀態為考量的參數,使用不同的概率方程式,計算各角度裂縫成長的相對概率。
    隨著溫度的增加,材料由脆硬轉變成具有延展性,在不同的應力權重放大因子 ,及塑性應變權重放大因子 之下,相對概率最大值發生之角度亦有所不同,但大多數的情況仍以0°角度方向成長為主。


    摘要……………………………………………………………………...I 目錄……………………………………………………………………..II 圖表目錄……………………………………………………………….V 第一章 緒論…………………………………………………………..1 1.1前言………………………………………………………………….1 1.2研究動機與目的…………………………………………………….2 1.3文獻回顧…………………………………………………………….3 第二章 基本理論…………………………...………………………..5 2.1 破裂力學…………………………………………………………...5 2.1-1裂縫發生的形式………………………………………….....5 2.1-2裂縫尖端的應力場……………………………………….....5 2.1-3應力強度因子…………………………………………….....6 2.2 材料塑性行為的硬化規則………………………………………...8 2.2-1等向性硬化規則………………………………………….....9 2.2-2隨動性硬化規則………………………………………….....9 2.3 破壞準則…………………………………………………………...9 2.3-1 von Mises 降伏準則………………………………………..9 2.3-2最大主應力準則…………………………………………...10 2.4 彈塑性力學常用的簡化力學模型……………………………….10 2.5 真應力與真應變之推導………………………………………….12 2.6 概率計算………………………………………………………….13 2.6-1脆性破裂…………………………………………………...13 2.6-2韌性破裂…………………………………………………...16 第三章 有限單元法及工程模擬分析軟體『ANSYS』……...19 3.1 有限單元法……………………………………………………….19 3.1-1 有限單元法基本理論……………………………………..19 3.1-2 等□數單元………………………………………………..23 3.1-3 高斯積分法………………………………………………..24 3.2 工程模擬分析軟體------『ANSYS』…………………………….25 3.2-1 『ANSYS』軟體簡介……………………………………..25 3.2-2 『ANSYS』的非線性分析………………………………..25 第四章 模型的建立與分析……………………………………….27 4.1 問題描述………………………………………………………….27 4.2 模型建立………………………………………………………….27 4.3 模型收斂性分析………………………………………………….28 4.4 模型合理性驗證………………………………………………….29 4.5 不同溫度下的塑性區分佈……………………………………….30 第五章 結果與討論………………………………………………...32 5.1 溫度T=-50℃………………………………………………...........33 5.2 溫度T=20℃………………………………………………............34 5.3 溫度T=90℃………………………………………………............37 第六章 結論…………………………………………………………40 □考文獻……………………………………………….……………..41

    [1] W. E. Anderson, “An engineer views brittle fracture history”, Boeing report, 1969.
    [2] D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986.
    [3] A. A. Griffith, “The phenomena of rupture and flow in solids”, Philosophical Transactions of the Royal Society of London, Sereis A, vol.221, pp. 163-198, 1920.
    [4] G. R. Irwin, “Fracture dynamics”, Fracturing of Metals, American Society for Metals, Ohio, Cleveland, pp. 147-166, 1948.
    [5] M. L. Williams, “Stress singularities resulting from various boundary condition in angular corners of plates in extension”, Journal of Applied Mechanics. vol. 19, pp. 526-528, 1952.
    [6] F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear”, Journal of Basic Engineering, vol. 85, pp. 519–527, 1963.
    [7] Ch. Zhang and D. Gross, “Ductile crack analysis by a cohesive damage zone model”, Engng Fracture Mech. 47, 237-248, 1994.
    [8] D. S. Dugdale, “Yielding of steel sheets containing slits’’, J. Mech. Phys. Solids 8, 100-104 ,1960.
    [9] G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture”, Advances in Applied Mechanics. appl. Meeh. 7, 55-129, 1962.
    [10] J. B. Sha, J. Sun, Z. J. Deng and H. J. Zhou, “Micro-crack tip fracture of commercial grade aluminum under mixed mode loading”, Journal of Theoretical and Applied Fracture Mechanics, vol. 31, pp. 119-130, 1999.
    [11] X. Teng, H. Mae, Y. Bai, T. Wierzbicki, “Statistical analysis of ductile fracture properties of an aluminum casting”, Journal of Engineering Fracture Mechanics, vol. 75, pp. 4610-4625, 2008.
    [12] C. R. Chiang, “A unified theory of fatigue and crack growth : a statistical approach”, International Journal of Fracture, vol. 53, pp. 337-342, 1992.
    [13] T. L. Anderson, “Fracture Mechanics Fundamentals and Applications”, 3rd ed, CRC Press, 2005.
    [14] W. Prager and P. G. Hodge Jr. , Theory of Perfectly Plastic Solids, Wiley, New York, 1951.
    [15] J. E. Shigley, 蘇金佳譯, 機械工程設計,東華書局, 1995.
    [16] 徐秉業、劉信聲,應用彈塑性力學,凡異出版社, 1997.
    [17] W. Liu, Z. Gao, Z. Yue, “Steady ratcheting strains accumulation in varying temperature fatigue tests of PMMA”, Materials Science and Engineering A, vol. 492, pp. 102-109, 2008.
    [18] R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Application of Finite Element Analysis, Wiley, New York, 2002.
    [19] 江見鯨, 有限元法及其應用, 機械工業出版社2006.
    [20] 劉晉奇、褚晴輝, 有限元素分析與ANSYS的工程應用, 滄海書局, 2006.
    [21] 李輝煌, ANSYS 工程分析:基礎與觀念, 高立圖書有限公司, 2005.
    [22] 許淵賓, “張開型裂縫成長方向的統計預測”, 碩士論文, 國立清華大學, 2008.
    [23] 蔡秝凱, “正交性複合材料中裂縫前端的微觀尺度應力強度因子”, 碩士論文, 國立清華大學, 2004.
    [24] 林建中, 高分子材料科學(高分子材料機械性質), 新文京開發出板股份有限公司, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE