研究生: |
古兆辰 Ku, Chao Chen |
---|---|
論文名稱: |
電漿處理對鍺掩埋層通道矽在絕緣體上鰭式電晶體電特性影響研究 Plasma Treatments on Electrical Properties in SOI FinFETs with Ge Buried Channel |
指導教授: |
張廖貴術
Chang-Liao,Kuei-Shu |
口試委員: |
陳旻政
趙天生 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
論文頁數: | 74 |
中文關鍵詞: | 電漿處理 、磊晶鍺虛擬基板 |
外文關鍵詞: | Plasma Treatments, Ge Buried Channel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於鍺材料有更高的載子遷移率,可用來提升驅動電流。所以利用NDL 實驗室內之超高真空化學氣相磊晶(UHVCVD)獲得鍺虛擬基板。但鍺表面易形成不穩定的氧化物且磊晶薄膜有較高的缺陷密度,故之後使用即場氣體電漿處理在界面層來改善電特性。
第一部分,使用磊晶成長Ge buried channel在 SOI FinFET 電晶體之上。在ALD 機台in-situ使用不同氣體(CF4/NH3/H2)電漿對界面層處理。CF4電漿處理能促使high-k由單斜晶重新結晶為正方晶,獲得較大的k值。使用NH3電漿處理後,能氮化界面層,降低漏電流與EOT。經過H2電漿處理,會減少表面懸鍵與修補界面缺陷。由實驗結果得知以CF4電漿處理在導通電流(on current)優於其他電漿處理的元件。但經過CF4電漿 處理會使得漏電流變大,此為後續實驗所著重重點。
第二部分,一樣先使用UHVCVD以平面性的磊晶方式磊Ge buried channel,再 蝕刻出鰭式結構。延續第一節為了改善CF4的漏電問題且維持高的導通電流,我們先通CF4電漿來獲得高導通電流再使用H2或NH3電漿來修補界面缺陷以減少Dit。實驗結果可以發現,經過CF4+H2之後的 FinFET 較CF4+NH3或純CF4試片有更好的電特性, 如較高的汲極電流、轉導值以及較低的S.S.。
The on current of MOSFETs can be improved by Ge channel, because its carrier mobility is higher than Si. Thus, an epitaxy Ge buried channel is applied in this thesis. The epitaxy layer is successfully grown by the ultrahigh vacuum chemical molecular epitaxy (UHVCVD) in National Nano Device Laboratories (NDL). However, unstable Ge sub-oxide is easily formed on Ge surface and the epitaxy Ge film has many defects. So in-situ plasma treatments are applied on interfacial layer to improve electrical properties of Ge MOSFETs.
In the first part, Ge buries channel is epitaxially grown layer-by-layer on Si SOI to form FinFET. And then, in-situ gas plasma (NH3/CF4/H2) treatments are applied on interfacial layer (IL) in Atomic Layer Deposition (ALD). CF4 plasma may transform some of the high-k from monoclinic to tetragonal, which can improve the k-value. After NH3 plasma treatment, the nitridation of IL can suppress leakage current and achieve smaller EOT. And H2 plasma can psssivate the Ge surface and reduce the dangling bonds at IL/Ge; Results show that electrical characteristics such as on current, Ion/Ioff ratio in CF4 sample are improved, but its leakage current is also increased. Thus, the following task would try to suppress leakage current.
In the second part, SOI FinFET with Ge buried channel is also studied, and the serious leakage current caused by CF4 plasma treatment will be resolved. After CF4 plasma treatment, further in-situ H2 or NH3 plasma treatment is applied to passivate the IL damages and reduce interface trap density (Dit). Results show that the CF4+H2 treatment is helpful to obtain better electrical characteristics compared to CF4+NH3 and CF4 sample, in terms of such as drain on current and subthreshold swing.
[1] M. Agostinelli,VLSI Tech, pp. 232–245, 2010.
[2] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, third edition, 2006.
[3] J. H. Stathis, et al, IEEE IEDM, Vol. 71, pp. 167-170, 1998.
[4] Yuan Taur, et al., First published 1998, Reprinted, p.161, 1999.
[5] D.C. Houghton, J. Appl. Phys, Vol. 70, pp. 2136-2151, 1991.
[6] M. Houssa, et al, Material Science and Enginerring R, pp. 37-87, 2006.
[7] H. S. Momose, et al., IEEE Trans. Electron Devices, vol. 43, pp.1233-1242, August 1996.
[8] S, Saito, et al., IEEE IEDM, pp. 797-800, 2003.
[9] R. People , et al., App. Phys. Lett, Vol. 47, pp. 322-324, 1985.
[10] C. R. Manoj et al.,IEEE Trans. Electron Devices, Vol. 55, pp. 603-611, 2008.
[11] B. Parvais et al., VLSI-TSA, pp. 80-81, 2009.
[12] Niraj K. Jha, Electrical Engineering, Princeton University.
[13] C. Y. Kang, et al., 2006 IEEE International SOI Conference Proceedings.
[14] Hayashida et al., IEEE Transactions on Electron Devices, Vol. 59, No. 3, pp.325-336, March 2012.
[15] C. Y. Kang et al., IEEE Electron Device Letters, Vol. 29, No. 5, pp.487-490, May 2008.
[16] M. Yang, in IEDM Tech. Dig. p.453, 2003.
[17] C. Y. Kang, et al., IEEE IEDM Tech. Dig., p.885 ,2006.
[18] Georgios Vellianitis et al., IEEE Transactions on Electron Devices, Vol. 56, No. 7, pp.1548-1553, July 2009.
[19] R. Woltjer, et al., IEEE Trans. Electron Devices, Vol. 42, pp. 109-115, 1995.
[20] University of Glasgow Semiconductor Device Group website.
[21] A. I. Kingon, et al, Nature 406, p. 1032, 2000.
[22] Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007.
[23] Tackhwi Lee, et al., IEEE Trans. Electron Devices, Vol. 58, NO. 2, pp. 562-566, 2011.
[24] S. I. Takagi et al., IEEE Trans. Electron Devices, Vol. 41, NO.12, pp. 2357-2362, 1994.
[25] T.P.Ma, IEEE Trans. Electron Device, Vol. 45, pp. 680-690, March 1998.
[26] Chen-Chien. Li, et al. Solid-State Electronics 101 (2014), pp.33–37.
[27] S. Maikap ,et al. Solid-State Electronics 49 (2005), pp.524–528.
[28] Jean-Jong Kim ,et. al, Thin Solid Films 377-378 2000, pp.525-529.
[29] P.T.Liu ,et al. Thin Solid Films ,pp.345-350. 1998.
[30] Chia Ching Yeo, et al., IEEE Electron Device Letters, Vol. 26, No. 10, pp.761-763, 2005.
[31] Swapnadip Ghosh,et al., IEEE EDL, vol. 35.no. 9, pp.900-902, SEPTEMBER 2014.
[32] Erich Kasper et al., Thin Solid Films, Vol. 336, pp. 319-322, 1998.
[33] Tung Ming Pan, et al., Appl. Phys. Lett. vol.78, pp.1439-1441, 2001.
[34] C. D. Young, et al., IEEE Device and Materials Reliability, Vol.6, pp.123-131, 2006.
[35] Gareth Nicholas, et al., IEEE Electron Device Letters., Vol 28, pp.825-827, 2007.
[36] R.I, Bahar, et al., IEEE Trans. Electron Devices, Vol. 59, pp. 807-812, March 2012.
[37] Erich Kasper et al., Thin Solid Films, Vol. 336, pp. 319-322, 1998.
[38] Rui Zhang et al., IEEE IEDM, pp.28.3.1- 28.3.4, 2011.
[39] Laura M. Giovane, et al., Appl. Phys. Lett, Vol .78, No. 4, pp.541-543, 2001.
[40] E. A.Fitzgerald, et al., J. Vac. Sci. Technol B, Vol. 10, pp. 1807-1819, 1992.
[41] D. A. Antoniadis, et al., IBM J. Res. & Dev, Vol. 50, pp.363-376, 2006.