簡易檢索 / 詳目顯示

研究生: 周煜庭
Chou, Yu-Ting
論文名稱: 微中子在密度週期性變化介質下的參數式共振
Neutrino parametric resonance in periodic density profile
指導教授: 吳孟儒
Wu, Meng-Ru
曾柏彥
Tseng, Po-Yan
口試委員: 林貴林
Lin, Guey-Lin
史馬丁
Spinrath, Martin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 微中子共振微中子震盪週期性物質弱交互作用初始條件和相位差
外文關鍵詞: neutrino, Resonance, Neutrino oscillation, Periodical matter, weak interaction, initial condition and phase difference
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用兩種方法(矩陣方法、拉比方法)來分析微中子在介質中參數式共振
    的行為,並將這兩種方法做延伸與應用到不同密度週期性變化的物質系統。對
    於物質密度週期變化的相位,我們有相當重要的觀察,相位差會大幅影響參數
    式共振的條件(對角項等於零),這與以前的研究矛盾,而我們也找到矛盾的原因
    在於過去研究關於初始條件的設定(微中子波函數的純態與混態),在基底轉換的
    過程中(弱作用味基底、質量基底、共旋轉基底),並未跟著適時地轉換。
    再者,矩陣的表示方法中,我們使用微擾技巧,發現可以推導出和拉比方法
    一樣的共振條件,並有數值的驗證,如此便能將兩種方法的關係連接在一起。
    最後,我們將矩陣方法延伸到任意週期性密度變化的物質環境,並基於包立
    矩陣的特性,找出機率振福的通解,這其中也包含著將參數式共振行為在向量
    的空間中圖像化的洞見。以上的方法都將為微中子在各式環境中的參次式共振
    行為提供更詳盡的解讀。


    In this paper, we explore two methods for analyzing neutrino parametric resonance
    and apply them to different systems in order to precisely determine the
    behavior of neutrinos. We make an important observation regarding the phase
    difference in a fluctuating matter density profile, which plays a significant role in
    determining the resonance criteria. This finding contradicts previous conclusions
    that overlooked the influence of mixed initial conditions after transformation into
    a rotating frame.
    Furthermore, we utilize a perturbation method in conjunction with matrix
    analysis, demonstrating the equivalence between the resonance criteria derived
    from our approach and another criterion obtained using the Rabi method. This
    establishes a connection and enhances our understanding of the phenomenon.
    Lastly, by examining the general form of arbitrary density profiles, we gain valuable
    insights and interpretations regarding neutrino parametric resonance. This
    provides a broader understanding of the subject matter and contributes to the
    body of knowledge in this field.

    Contents Abstract (Chinese) I Acknowledgements (Chinese) II Abstract III Acknowledgements IV Contents VI 1 Introduction 1 2 Two methods of analyzing parametric resonance 5 2.1 Evolution Matrices in Flavor Eigen-space . . . . . . . . . . . . . . . 6 2.2 Rabi oscillation in co-rotating mass eigen-basis . . . . . . . . . . . . 9 3 Application and Extend Research on Rabi Method 13 3.1 Interference Picture and Self-interference . . . . . . . . . . . . . . . 13 3.1.1 Resonance Condition and Range . . . . . . . . . . . . . . . . 14 3.1.2 Self-Interference . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Phase Difference and Initial Condition . . . . . . . . . . . . . . . . 19 3.2.1 Phase Effect and Guess . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 Phase Difference Between Two Modes . . . . . . . . . . . . 24 3.2.3 Exact solution of phase effect . . . . . . . . . . . . . . . . . 25 VI 4 Application and extend research on matrices method 29 4.1 Perturbation for explaining resonance condition . . . . . . . . . . . 31 5 General form of arbitrary density profile 41 6 Conclusion 45 Bibliography 47

    [1] J. J. Thomson. Cathode rays. Phil. Mag. Ser. 5, 44:293–316, 1897.
    [2] E. Rutherford. Collision of α particles with light atoms. IV. An anomalous
    effect in nitrogen. Phil. Mag. Ser. 6, 37:581–587, 1919.
    [3] J. Chadwick. The Existence of a Neutron. Proc. Roy. Soc. Lond. A,
    136(830):692–708, 1932.
    [4] Frederick Reines and Clyde L. Cowan. The neutrino. Nature, 178:446–449,
    1956.
    [5] L. D. Landau. On the conservation laws for weak interactions. Nucl. Phys.,
    3:127–131, 1957.
    [6] T. D. Lee and Chen-Ning Yang. Parity Nonconservation and a Two Component
    Theory of the Neutrino. Phys. Rev., 105:1671–1675, 1957.
    [7] B. Pontecorvo. Mesonium and anti-mesonium. Sov. Phys. JETP, 6:429, 1957.
    [8] B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of
    Leptonic Charge. Zh. Eksp. Teor. Fiz., 53:1717–1725, 1967.
    [9] V. N. Gribov and B. Pontecorvo. Neutrino astronomy and lepton charge.
    Phys. Lett. B, 28:493, 1969.
    [10] G. Danby, J. M. Gaillard, Konstantin A. Goulianos, L. M. Lederman, Nari B.
    Mistry, M. Schwartz, and J. Steinberger. Observation of High-Energy Neutrino
    Reactions and the Existence of Two Kinds of Neutrinos. Phys. Rev.
    Lett., 9:36–44, 1962.
    [11] K. Kodama et al. Observation of tau neutrino interactions. Phys. Lett. B,
    504:218–224, 2001.
    [12] S. M. Bilenky. Neutrino. History of a unique particle. Eur. Phys. J. H,
    38:345–404, 2013.
    [13] W. C. Haxton, R. G. Hamish Robertson, and Aldo M. Serenelli. Solar Neutrinos:
    Status and Prospects. Ann. Rev. Astron. Astrophys., 51:21–61, 2013.
    [14] Alessandro Mirizzi, Irene Tamborra, Hans-Thomas Janka, Ninetta Saviano,
    Kate Scholberg, Robert Bollig, Lorenz Hudepohl, and Sovan Chakraborty.
    Supernova Neutrinos: Production, Oscillations and Detection. Riv. Nuovo
    Cim., 39(1-2):1–112, 2016.
    [15] E. Akhmedov. Parametric resonance of neutrino oscillations and passage
    of solar and atmospheric neutrinos through the earth. Nuclear Physics B,
    538(1):25–51, 1999.
    [16] L. Wolfenstein. Neutrino Oscillations in Matter. Phys. Rev. D, 17:2369–2374,
    1978.
    [17] R. F. Sawyer. Neutrino oscillations in inhomogeneous matter. Phys. Rev. D,
    42:3908–3917, 1990.
    [18] H. Nunokawa, Anna Rossi, V. B. Semikoz, and J. W. F. Valle. The Effect
    of random matter density perturbations on the MSW solution to the solar
    neutrino problem. Nucl. Phys. B, 472:495–517, 1996.
    48
    [19] F. N. Loreti, Y. Z. Qian, G. M. Fuller, and A. B. Balantekin. Effects of
    random density fluctuations on matter enhanced neutrino flavor transitions
    in supernovae and implications for supernova dynamics and nucleosynthesis.
    Phys. Rev. D, 52:6664–6670, 1995.
    [20] P. I. Krastev and A. Yu. Smirnov. Parametric Effects in Neutrino Oscillations.
    Phys. Lett. B, 226:341–346, 1989.
    [21] J. P. Kneller, G. C. McLaughlin, and K. M. Patton. Stimulated Neutrino
    Transformation in Supernovae. J. Phys. G, 40:055002, 2013.
    [22] James P. Kneller, Gail C. Mclaughlin, and Kelly M. Patton. Stimulated
    neutrino transformation in supernovae. AIP Conf. Proc., 1560(1):176–178,
    2013.
    [23] James P. Kneller and Neel V. Kabadi. Sensitivity of neutrinos to the supernova
    turbulence power spectrum: Point source statistics. Phys. Rev. D,
    92(1):013009, 2015.
    [24] Kelly M. Patton, James P. Kneller, and Gail C. McLaughlin. Stimulated
    neutrino transformation through turbulence on a changing density profile and
    application to supernovae. Phys. Rev. D, 91(2):025001, 2015.
    [25] Shashank Shalgar Lei Ma and Huaiyu Duan. Matter parametric neutrino flavor
    transformation through rabi resonances. Physical Review D, 98(1):103011,
    2018.
    [26] J. Napolitano J. Sakurai. Modern Quantum Mechanics, 2nd Edition. Addison-
    Wesley, y, 1301 Sansome Street, San Francisco, CA 941 11, 2011.

    [27] T.P. Orlando. Two-Level System with Static and Dynamic Coupling. Massachusetts
    Institute of Technology, Massachusetts Institute of Technology,
    2004.

    QR CODE