簡易檢索 / 詳目顯示

研究生: 黃聖傑
Huang, Sheng Chieh
論文名稱: 電磁熱療系統應用於腫瘤微創治療及臟器切除療程
Electromagnetic thermotherapy system for internal medicine and surgery
指導教授: 李國賓
Lee, Gwo Bin
林錫璋
Lin, Xi Zhang
口試委員: 宋震國
Sung, Chen Kuo
王玉麟
Wang, Yu Lin
衛榮漢
Wei, Jung Han
沈延盛
Shan, Yan Shen
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 腫瘤治療熱療法電磁熱療系統兩段針矩陣針微創手術無血臟器切除
外文關鍵詞: cancer and trauma therapy, hyperthermia, thermotherapy, two-section needle, needles array, minimally invasive surgery, bloodless resection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁熱療系統為近年來廣泛應用於腫瘤熱治療之技術,其中包含內科經皮穿刺熱燒灼術及外科無血切除術。其原理為利用線圈產生之高頻交流電磁場對各種不同之感磁針具進行感應加熱。本研究開發一同步式高深度電磁熱療系統可延長磁場深度至40 cm,可應用於大型動物及人體之經皮穿刺手術,動物實驗成功的利用兩段式加熱針經超音波導引置針,於同步式高深度電磁熱療系統下,燒灼蘭嶼豬之肝臟,且術後沒有任何併發症。另一方面,利用外科臟器切除,當組織及血管被高溫燒灼後,血管封閉或燒結,以達到無血臟器切除治療之目的,本研究亦開發一電磁熱療系統及矩陣式熱療針,可應用於外科之無血切除手術。此系統及針具已完成動物實驗,成功將豬之肝臟無血切除,術後皆存活並沒有任何併發症,於術後兩周再度開腹觀察,其臟器傷口也沒有任何化膿及發炎反應。其存活率達到100%且術中出血量少於20ml驗證本療法的可行性。


    Thermal ablation has been widely explored and may become a promising treatment against cancer. Especially, electromagnetic-based thermotherapy has been extensively investigated for a variety of medical applications in recent years. Briefly, it applies a high-frequency alternating electromagnetic field to heat up nano-particles, seeds, or needles made of magnetic materials which are injected or inserted into the target organs to locally ablate tissues. In this work, two promising applications including internal medicine and surgery for an electromagnetic thermotherapy system have been demonstrated. In internal medicine, a prototype synchronized electromagnetic thermotherapy system equipped with a new coil design and a two-section needle was reported in this study. It could generate an effective alternating electromagnetic field with a deep penetration depth to heat up the needle placed up to 40 cm away from the coils such that a minimally invasive surgery becomes feasible. Several important parameters of the synchronized electromagnetic thermotherapy system, including the heating effect of the needle at different positions, the intensity of the electromagnetic field and the temperature distributions on the tissue around the needle, were first explored. An in-vitro animal experiment was also performed. It showed that the porcine liver could be successfully ablated by the needles array under the long-distance alternating electromagnetic field which effectively penetrated 40 cm deep and the ablation area was measured about 3 cm X 3 cm. Then in-vivo experiments on New Zealand white rabbits and Lan-Yu pigs were also conducted in the study. Experimental results showed that the two-section needle arrays combined with the electromagnetic thermotherapy system could be promising for minimally invasive surgery. In surgery, a new configuration of two-row needle arrays under an electromagnetic thermotherapy system with a temperature feedback control system was demonstrated. With this approach, tissue and tumor could be bloodlessly resected in large animals and humans. The survival rate in the clinical trials achieved 100%, and the blood loss was lower than 20 ml. The developed system may be promising for cancer therapy in the near future.

    Abstract 中文摘要 Acknowledgements Figure list Abbreviations Chapter 1 Introduction 1.1 No-touch treatment in internal medicine by using the electromagnetic thermotherapy system 1.2 Introduction to organ resection in surgery 1.3 Motivation and objectives Chapter 2 Materials and Methods 2.1 Hardware 2.1.1 Hardware in internal medicine 2.1.2 Hardware in surgery 2.2 Experimental setup for the synchronized system in minimally invasive surgery 2.2.1 Heating effect of the needle 2.2.2 Intensity of the electromagnetic field 2.2.3 New treating therapy 2.2.4 In vitro test by using the needle arrays under the synchronized EMT system 2.2.5 In-vivo animal test 2.3 Experimental setup in the surgery 2.3.1 Temperature measurement 2.3.2 In-vitro test 2.3.3 Animal test 2.3.4 Human trials Chapter 3 Results and discussion 3.1 Minimally invasive surgery by using the synchronized system 3.1.1 Temperature distribution on the needle 3.1.2 Electromagnetic field measurements 3.1.3 The ablation range of the single needle by using the new treatment process 3.1.4 In vitro needle-array ablation in the porcine liver 34 3.1.5 In-vivo test 3.2 Results in surgery 3.2.1 Heating effect of the stainless needle 3.2.2 Effective coagulation area at different temperatures 3.2.3 Temperature distribution in the porcine liver 3.2.4 Liver resection in Lan-Yu pigs 3.2.5 Tumor resection in human trials Chapter 4 Conclusions and Future Work References

    1.R. B. Turnbull, K. Kyle, F. R. Watson, J. Spratt, “Cancer of the colon: the influence of the no-touch isolation technic on survival rates,” Annals of Surgery, 166(3): 420–427, 1967.
    2.T. Wiggers. J. Jeekel, J. W. Arends, A. P. Brinkhorst, H. M. Kluck, C. I. Luyk, J. D. K. Munting, J. A. C. M. Povel, A. P. M. Rutten, A. Volovics, J. M. Greep, “No-Touch isolation technique in colon cancer: A controlled prospective trial,” British Journal of Surgery 75: 409–415, 1988.
    3.N. Hayashi, H. Egami, M. Kai, Y. Kurusu, S. Takano, M. Ogawa, “No-touch isolation technique reduces intraoperative shedding of tumor cells into the portal vein during resection of colorectal cancer,” Surgery, 125(4) : 369-374, 1999.
    4.S Rossi, E. Buscarini, P. Quaretti, F. Garbagnati, L. Squassante, C. T. Paties, D. E. Silverman, L. Buscarini, “Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer.” American Journal of Roentgenol, 167:3, 759-768. 1996.
    5.S. N. Goldberg, G. S. Gazelle and P. R. Mueller, “Thermal ablation therapy for focal malignancy a unified approach to underlying principles, techniques, and diagnostic imaging guidance,” American Journal of Roentgenol, 174(2):323-331, 2000.
    6.C. J. Diederich, “Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation,” International Journal of Hyperthermia, 21(8) : 745-753, 2005.
    7.K. H. Fuchs, “Minimally invasive surgery,” Endoscopy, Vol. 34(2), pp. 154-159, 2002.
    8.N. Masakuni, “Minimally invasive surgery for small breast cancer,” Journal of Surgical Oncology, 84(2) : 94-101, 2003.
    9.L. Solbiati, T. Ierace, S. N. Goldberg, S. Sironi, T. Livraghi, R. Fiocca, G. Servadio, G .Rizzatto, P. R. Mueller, A. D. Maschio and G. S. Gazelle, “Percutaneous US-guided radio-frequency tissue ablation of liver metastases: treatment and follow-up in 16 patients,” Radiology, Vol.202, pp. 195-203, 1997.
    10.J. P. McGahan, G. D. Dodd, “Radiofrequency ablation of the liver current status,” American Journal of Roentgenol, 176(1):3-16, 2001.
    11.R. P. Jones, N. R. Kitteringham, M. Terlizzo, C. Hancock, D. Dunne, S. W. Fenwick, G. J. Poston, P. Ghaneh, and H. Z. Malik, “Microwave ablation of ex vivo human liver and colorectal liver metastases with a novel 14.5 GHz generator,” International Journal of Hyperthermia, Vol. 28(1), pp. 43-54, 2012.
    12.B. Lepers, P. Clegg, N. Cronin and I. Wieland, “A microwave surface applicator for tissue coagulation: Technical characteristics and performances,” Journal of Medical Devices, Vol. 6(1), 014502 (6 pages), 2012.
    13.A. Jordana, R. Scholza, K. M. Hauffb, M. Johannsenc, P. Wusta, J. Nadobnya, H. Schirrad, H. Schmidtd, S. Degerc, S. Loeningc, W. Lankschb and R. Felixa, “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, Vol. 225(1-2), pp.118-126, 2001.
    14.P. R. Stauffer, T. C, Cetas and R. C. Jones, “Magnetic Induction Heating of Ferromagnetic Implants for Inducing Localized Hyperthermia in Deep-Seated Tumors,” IEEE Transaction on Biomedical Engineering, Vol. 31(2), pp. 235-251, 1984.
    15.S. J. DeNardo, G. L. DeNardo, L. A. Miers, A. Natarajan, A. R. Foreman, C. Gruettner, G. N. Adamson, R. Ivkov, “Development of tumor targeting bioprobes (111in-chimeric l6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy,” Clinical Cancer Research, 11: 7087-7092, 2005.
    16.Y. S. Shan, R. Zuchini, H. W. Tsai, P. D. Lin, G. B. Lee, X. Z. Lin, “Bloodless liver resection using needle arrays under alternating EMFs,” Surgery Innovation, Vol. 17(2), pp. 95-100, 2010.
    17.G. S. Gazelle, S. N. Goldberg, L. Solbiati, T. Livraghi, “Tumor Ablation with Radio-frequency Energy,” Radiology, 217(3): 633-646, 2000.
    18.E. J. Patterson, C. H. Scudamore, D. A. Owen, A. G. Nagy, A. K. Buczkowski, “Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size,” Annals of Surgery, 227(4): 559–565, 1998.
    19.F. T. Lee Jr., D. Haemmerich, A. S. Wright, D. M. Mahvi, L. A. Sampson, J. G. Webster, “multiple probe radiofrequency ablation: pilot study in an animal model,” Journal of Vascular and Interventional Radiology, 14(11): 1437-1442, 2003.
    20.A. S. Wright, F. T. Lee, D. M. Mahvi, “Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis,” Annals of Surgical Oncology, 10(3): 275-283, 2003.
    21.R.Yang, C. R. Reilly, F. J. Rescorla, P.R. Faught, N. T. Sanghvi, F. J. Fry, T. D. Franklin, L. L., J. L. Grosfeld, “ High-Intensity Focused Ultrasound in the Treatment of Experimental Liver Cancer,” Archives of Surgery, 126(8) : 1002-1010, 1991.
    22.B. Mensel, C. Weigel, N. Hosten,” Laser-Induced Thermotherapy ,” Recent Results in Cancer Research, 167: 69-75. 2006.
    23.T. B. Flanagan, B. S. Bowerman, G. E. Biehl , “Hysteresis in metal/hydrogen systems.” Scripta Metallurgica. 14 :443-447. Apr. 1980.
    24.Y. C. Chang, N. Nagasue, C. S. Chen, “Simplified hepatic resections with the use of a Chang's needle.” Annals of Surgery, 243: 169-172, 2006.
    25.H. Bismuth, “Surgical anatomy and anatomical surgery of the liver.” World Journal of Surgery, 6(1): 3-9, 1982.
    26.S. Curley, “Radiofrequency Ablation of Malignant Liver Tumors,” The Oncologist, 6: 14-23, 2001.
    27.C. H. Scudamore, S. I. Lee, E. J. Patterson, A. K. Buczkowski, L. V. July, S. W. Chung, A. R. Buckley, S. F. Ho, D. A. Owen, “Radiofrequency ablation followed by resection of malignant liver tumors,” The American Journal of Surgery, 177: 411-417, 1999.
    28.E. K. Abdalla, J. N. Vauthey, M. Lee, V. Ellis, R. Pollock, K. R. Broglio, K. Hess, S. Curley, “Recurrence and Outcomes Following Hepatic Resection, Radiofrequency Ablation, and Combined Resection/Ablation for Colorectal Liver Metastases,” Annals of Surgery, 239: 818–827, 2004.
    29.A. B. Peitzman, B. Heil, L. Rivera, “Blunt splenic injury in adults: multi-institutional study of the Eastern Association for the Surgery of Trauma,” Journal of Trauma, 49:177-189, 2000.
    30. D. Gianoma, A. Wildisenb, T. Hotza, F. Gotia, M. Decurtinsa, “Open and Laparoscopic Treatment of Nonparasitic Splenic Cysts,” Digestive Surgery, 20:74-78, 2003.
    31.J. P. McGahan, G. D. Dodd, “Radiofrequency Ablation of the Liver,” American Journal of Roentgenology, 176: 3-16, 2001.
    32.P. Jais, M. Haissaguerre, D. C. Shah, S. Chouairi, L. Gencel, M. Hocini, J. Clementy, “A Focal Source of Atrial Fibrillation Treated by Discrete Radiofrequency Ablation,” Circulation, 95: 572-576, 1997.
    33.E. J. Patterson, C. H. Scudamore, D. A. Owen, A. G. Nagy, and A. K. Buczkowski, “Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size.” Annals of Surgery, 227:559–565, 1998.
    34.J. C. Weber, G. Navarra , L. R. Jiao, J. P. Nicholls, S. L. Jensen, and N. A. Habib, “New Technique for Liver Resection Using Heat Coagulative Necrosis.” Annals of Surgery. 236: 560–563, 2002.
    35.S. N. Goldberg, G. S. Gazelle, C. C. Compton, P. R. Mueller, K. K. Tanabe, “Treatment of intrahepatic malignancy with radiofrequency ablation.” Radiologic-pathologic correlation, 88:2452 – 2463, 2001.
    36.S. Y. Nam, H. Rhim, T. W. Kang, M. W. Lee, Y. S. Kim, D. Choi, W. J. Lee, Y. Park, I. Chang, H. K. Lim, “Percutaneous radiofrequency ablation for hepatic tumors abutting the diaphragm: clinical assessment of the heat-sink effect of artificial ascites.” American Journalism Review, 194:227-23, 2010.
    37.C. J. Simon, D. E. Dupuy, W. W. Mayo-Smith, “Microwave Ablation: Principles and Applications,” Radio Graphics, 25:69-83, 2005
    38.A. E. Saltman, L. S. Rosenthal, N. Francalancia, S. J. Lahey, “A Completely Endoscopic Approach to Microwave Ablation for Atrial Fibrillation,” The Heart Surgery Forum, 6: 38-41, 2003.
    39.A. Schuetza, C. J. Schulzea, K. K. Sarvanakisa, H. Maira, H. Plazera, E. Kilgerb, B. Reicharta, S. M. Wildhirta, “Surgical treatment of permanent atrial fibrillation using microwave energy ablation: a prospective randomized clinical trial,” European Journal of Cardio-Thoracic Surgery, 24:475-480, 2003.
    40.M. R. Williams, M. Knaut, D. Bérubé, M. C. Oz, “Application of microwave energy in cardiac tissue ablation: from in vitro analyses to clinical use,” The Annals of Thoracic Surgery, 74: 1500-1505, 2002.
    41.A. S. Wright, F. T. Lee Jr., D. M. Mahvi, “Hepatic Microwave Ablation With Multiple Antennae Results in Synergistically Larger Zones of Coagulation Necrosis,” Annals of Surgical Oncology, 10:275-283, 2003.
    42.S. C. Huang, Y. Y. Chang, J. W. Kang, H.W. Tsai, Y. S. Shan, X. Z. Lin and G. B. Lee, “An Electromagnetic Thermotherapy System with a Deep Penetration Depth for Percutaneous Thermal Ablation,” Annals of Biomedical Engineering, Vol. 42(1), pp. 86-96, 2014.
    43.S. C. Huang, Y. Y. Chang, Y. J. Chou, Y. S. Shan, X. Z. Lin and G. B. Lee, "Dual-row Needle Arrays under an Electromagnetic Thermotherapy System for Bloodless Liver Resection Surgery," IEEE Transaction on Biomedical Engineering, Vol. 59(3), pp. 824-831, 2012.
    44.S. C. Huang, J. W. Kang, H. W. Tsai, Y. S. Shan, X. Z. Lin and G. B. Lee*, “Electromagnetic Thermotherapy System with Needle arrays: A practical tool for the removal of cancerous tumors,” IEEE Transaction on Biomedical Engineering, vol.61, no.2, pp.598,605, Feb. 2014

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE