研究生: |
林佳威 Lin, Jia-Wei |
---|---|
論文名稱: |
頻率相依光子晶體之能帶結構與保結構Arnoldi方法 The Band Structure on Frequency-Dependent Photonic Crystal with Structure Preserving Arnoldi Method |
指導教授: |
朱家杰
Chu, Chia-Chieh |
口試委員: |
林文偉
Lin, Wen-Wei 黃聰明 Hwang, Tsung-Min |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 能帶結構 、SHIRA 、頻率相依 、陀螺二次特徵值問題 、回文二次特徵值問題 、不變子空間 |
外文關鍵詞: | band-gap, frequency-dependent, SHIRA, gyroscopic, palindromic, invariant subspace |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討二維頻率相依光子晶體的能帶結構與保結構之Arnoldi 方法。有關光子晶體之能帶結構的研究多為非頻頻率相依之材料,其所相關之頻譜問題多為線性頻譜問題,輔以離散化與的傳統特徵值演算法,如IRA, Jacobi-Davidson 等,便能求得該晶體結構與材料所對應之能帶結構的近似解。但是在頻率相依之材料中,因為其材料之介電係數與頻率為相關的,其所對應之特徵值問題多為非線性特徵值問題,故一般針對線性特徵值問題的演算法難以應用在此類問題上。C. Engstrom and M. Richter 建議了利用色散關係將原本的非線性頻譜問題轉化為線性的頻譜問題,其所對應之頻譜參數也從頻率轉變為波向量之波長。這個轉換所對應之離散型特徵值問題可以被寫為一組陀螺二次特徵值問題,其特徵值可經由保結構演算法SHIRA 來求得近似解,優於使用傳統的特徵值演算法,如IRA。但此演算法將面臨其不變子空間求解之困難。
本文主要在於介紹針對上述不變子空間的提取方法,與上述陀螺二次特徵值問題經由轉換後而得到之回文二次特徵值問題求解。後者將在計算上優於前者,並且無上述不變子空間求解的困難。
This study focused on the two-dimensional frequency-dependent photonic crystal band structure and structured-preserving Arnoldi method. Research related most to band structure of the frequency-independent material, it's mostly correspond to a linear spectral problem. Combined with the traditional algorithms for discrete eigenvalue problem, such as IRA, Jacobi-Davidson etal., It will be able to obtain the approximate solution of band structure corresponding to crystal structure and the material. However, on the frequency-dependent material, since the dielectric constant of the material and the frequency
is related, it corresponds to the eigenvalue problem mostly nonlinear eigenvalue problem. Therefore, the general algorithm for linear eigenvalue problem is dicult to apply in such problems. C. Engstrom and M. Richter
recommends using dispersion relation to transform the non-linear problem into a linear spectrum spectral problem. The spectral parameter also transformed from the frequency to the wavelength of the wave vector. Discrete
eigenvalue problem corresponding to the transformed spectral problem can be written as a gyroscopic quadratic eigenvalue problem. It can be solved approximately by the structured-preserving algorithm SHIRA, which will batter than the general eigensolver, such as IRA. However, this algorithm will encounter diculties of solving its invariant subspace.
This paper is focus on extracting invariant subspace described above, and the gyroscopic quadratic eigenvalue problem can be obtained to a palindromic eigenvalue problem. The latter will be better than the former on the computation, and without diculty to solve the invariant subspace.
[1] Werner S Weiglhofer. Introduction to complex mediums for optics and electro-
magnetics, volume 123. SPIE press, 2003.
[2] John D Joannopoulos, Steven G Johnson, Joshua N Winn, and Robert D
Meade. Photonic crystals: molding the
ow of light. Princeton university press,
2011.
[3] Peter Kuchment. The mathematics of photonic crystals. Mathematical modeling
in optical science, 22:207{272, 2001.
[4] Michel Cessenat. Mathematical methods in electromagnets. 1996.
[5] John David Jackson. Classical electrodynamics. Wiley, 1999.
[6] Christian Engstrom and Markus Richter. 3D on the spectrum of an operator
pencil with applications to wave propagation in periodic and frequency dependent
materials. SIAM Journal on Applied Mathematics, 70(1):231{247, 2009.
[7] Michael Reed and Barry Simon. Methods of modern mathematical physics,
volume 2. Academic press, 1908.
[8] Peter A Kuchment. Floquet theory for partial dierential equations, volume 60.
Birkhauser, 2012.
[9] Michael Sh Birman and Mikhail Zakharovich Solomjak. Spectral theory of self-
adjoint operators in Hilbert space, volume 5. Springer Science & Business Media,
2012.
[10] Aleksandr Semenovich Markus. Introduction to the spectral theory of polynomial
operator pencils. American Mathematical Soc., 2012.
[11] Claes Johnson. Numerical solution of partial dierential equations by the nite
element method. Courier Corporation, 2012.
[12] Francoise Tisseur and Karl Meerbergen. The quadratic eigenvalue problem.
SIAM review, 43(2):235{286, 2001.
[13] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Matrix polynomials, volume
58. Siam, 1982.
[14] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU
Press, 2012.
[15] Volker Mehrmann and David Watkins. Polynomial eigenvalue problems with
hamiltonian structure. Electron. Trans. Numer. Anal, 13:106{118, 2002.
[16] Tsung-Ming Huang, Wen-Wei Lin, and Jiang Qian. Structure-preserving algorithms
for palindromic quadratic eigenvalue problems arising from vibration of
fast trains. SIAM Journal on Matrix Analysis and Applications, 30(4):1566{
1592, 2009.
[17] Wen-Wei Lin. A new method for computing the closed-loop eigenvalues of a
discrete-time algebraic riccati equation. Linear Algebra and its Applications,
96:157{180, 1987.
[18] Chun-Hua Guo, Yueh-Cheng Kuo, and Wen-Wei Lin. On a nonlinear matrix
equation arising in nano research. SIAM Journal on Matrix Analysis and Ap-
plications, 33(1):235{262, 2012.
[19] Volker Mehrmann and David Watkins. Structure-preserving methods for computing
eigenpairs of large sparse skew-hamiltonian/hamiltonian pencils. SIAM
Journal on Scientic Computing, 22(6):1905{1925, 2001.
[20] Tsung-Min Hwang, Wen-Wei Lin, and Volker Mehrmann. Numerical solution
of quadratic eigenvalue problems with structure-preserving methods. SIAM
Journal on Scientic Computing, 24(4):1283{1302, 2003.