研究生: |
吳睿中 Wu,Jui-Chung |
---|---|
論文名稱: |
複製通道錯誤更正碼的研究 A Study of Error Correcting Codes over Duplication Channel |
指導教授: |
呂忠津
Lu,Chung-Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 複製通道 、固定組成碼 、單位成本通道容量 、非對稱通道 、同步錯誤 |
外文關鍵詞: | Duplication Channels, Constant Composition Codes, Capacity per Unit Cost, Asymmetric Channels, Synchronization Errors |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統錯誤更正碼所對抗的通道錯誤是替代錯誤,並沒有考慮同步錯誤的情況。如果在一個會發生同步錯誤的通道上使用傳統錯誤更正碼,那麼一旦發生一次同步錯誤,在之後的所有碼字都會因為不對齊而造成錯誤。因此,針對同步錯誤通道設計特別的錯誤更正碼是必要的。最早是由Sellers開始注意到這個問題,他的做法是在每個碼字間插入特別的同步用序列。之後Levenstein發現原先由Varshamov,Tenegolts兩人所發明用來對抗Z通道的VT碼,也可以用來對抗同步錯誤,並進一步地推導出許多同步通道中重要的基本性質。他的做法是每一個固定長度的碼字,可以改固定個數個同步錯誤,後來的多數研究都是類似這種做法。唯一不同的是MacKay,他把低密度同位元檢查碼和一串稱為浮水印碼的序列做互斥運算,用浮水印碼抓回同步,再用低密度同位元檢查碼更正錯誤。
除了錯誤更正碼的設計,計算同步錯誤通道的通道容量也是一個一直存在的問題。由於同步錯誤通道並不具有無記憶性的特性,使得分析起來相當困難,除了數值逼近的方法外,直到現在都還只有通道容量的界限。
而本篇論文主要針對同步錯誤中的複製錯誤,基於前人把複製通道簡化成複製區塊通道的概念,分析複製區塊通道,進而設計適合的錯誤更正碼,以達到通道容量為目標。並分為零錯誤傳輸方式和允許錯誤傳輸方式兩方面來討論。
Insertion and deletion errors are two main classes of synchronization errors.
In this thesis, we focus on duplication errors, which is a subclass of insertion errors.
Our aim is to find error correcting codes for duplication channels which have a code rate per unit cost higher than 0.5, a rate per unit cost of a simple zero-error coding scheme.
[1] J.F.F.Sellers,“Bit loss and gain correction code,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 35–38, Jan. 1962.
[2] V.I.Levenshtein,“Binary codes capable of correcting deletions,insertions and reversals (english translation),” Soviet Physics Doklady, vol.10,no.8,Feb.1966.
[3] N.J.A.Sloane,“On single-deletion-correcting codes,” Ray-Chaudhuri Festschrift[online], 2001.
[4] G.Tenengolts,“Nonbinary codes,correcting single deletion or insertion,” IEEE Transactions on Information Theory, vol. 30, no. 5, pp.766–769,Sep.1984.
[5] Z.Liu and M.Mitzenmacher,“Codes for deletion and insertion channels with segmented errors,” ISIT 2007, pp. 846–850, Jun. 2007.
[6] L.Calabi and W.Hartnett,“A family of codes for the correction of substitution and synchronization errors,” IEEE Transactions on Information Theory, vol. 15, no. 1, pp. 102–106, Jan. 1969.
[7] E.Tanaka and T.Kasai,“Synchronization and substitution error-correcting codes for the levenshtein metric,” IEEE Transactions on Information Theory, vol. 22, no. 2, pp. 156–162, Mar. 1976.
[8] K.A.S.Abdel-Ghaffar,H.C.Ferreira,and L.Cheng,“On linear and cyclic codes for correcting deletions,” ISIT 2007, pp.851–855, Jun.2007.
[9] J.Ullman,“On the capabilities of codes to correct synchronization errors,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp.95–105,Jan.1967.
[10] M.Davey and D.Mackay,“Reliable communication over channels with insertions,deletions,and substitutions,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.
[11] M.Mitzenmacher and E.Drinea,“A simple lower bound for the capacity of the deletion channel,” IEEE Transactions on Information Theory,vol.52,no.10,pp.4657–4660,Oct.2006.
[12] E.Drinea and M.Mitzenmacher,“On lower bounds for the capacity of deletion channels,” IEEE Transactions on Information Theory, vol. 52,no.10,pp.4648–4657,Oct.2006.
[13] E.Drinea and M.Mitzenmacher,“Improved lower bounds for the capacity of i.i.d. deletion and duplication channels,” IEEE Transactions on Information Theory, vol. 53,no.8,pp.2693–2714,Aug.2007.
[14] E.Drinea and A.Kirsch,“Directly lower bounding the information capacity for channels with i.i.d. deletions and duplications,” ISIT 2007,pp.1731–1735,Jun.2007.
[15] S.Diggavi, M.Mitzenmacher, and H.D.Pfister,“Capacity upper bounds for the deletion channel,” ISIT 2007, pp. 1716–1720, Jun. 2007.
[16] I.Csiszar and J.Korner, Information Theory:Coding Theorems For Discrete Memoryless Systems. New York: Academic, 1981, pp. 29–46,99–122.
[17] I.Csiszar,“The method of types,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2505–2523, Oct. 1998.
[18] R.J.McEliece, Theory of Information and Coding:A Mathematical Framework for Communication. Addison-Wesley, 1977.
[19] R.G.Gallager, Information Theory and Reliable Communication. Wiley,1968.
[20] S.Verdu,“On channel capacity per unit cost,” IEEE Transactionson Information Theory, vol. 36, no. 5, pp. 1019–1030, Sep. 1990.
[21] M.Jimbo and K.Kunisawa,“An iteration method for calculating the relative capacity,” Information and Control, vol. 43, pp. 216–233, 1979.
[22] M.Mitzenmacher,“Capacity bounds for sticky channels,” IEEE Transactions on Information Theory, vol. 54, no. 1, pp. 72–77, Jan. 2008.
[23] C.Shannon,“The zero error capacity of a noisy channel,” IRE Transactions on Information Theory, vol. 2, no. 3, pp. 8–19, Sep. 1956.