簡易檢索 / 詳目顯示

研究生: 謝文凱
Wen-Kai Shie
論文名稱: 低溫不使用催化劑化學氣相沉積法於玻璃上成長氧化鋅奈米柱
Catalyst-Free Growth of ZnO Nanorods on Glass Substrate by Chemical Vapor Deposition at Low Temperature
指導教授: 林志明
Chih-Ming Lin
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 化學氣相沉積氧化鋅奈米柱不使用催化劑
外文關鍵詞: CVD, ZnO, nanorod, Catalyst-Free
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用化學氣相沉積法(CVD)成長氧化鋅(ZnO)奈米柱,並且沒有使用催化劑,成功製備在普通的玻璃基板上(玻璃基板溫度高於450℃)成長 ZnO奈米柱。不使用催化劑的製程可以降低成本以及消除製備過程中的雜質。掃描電子顯微鏡(SEM)量測,在受熱條件:鋅粉為600℃,玻璃基板受熱為450℃時,奈米柱呈排列整齊的準直成長。製程條件為:氬氣500sccm、氧氣30sccm、工作壓力2000mTorr、持溫30min。成長出良好深寬比的氧化鋅奈米柱為60:1,並且沒有使用任何退火過程。X光繞射圖譜,具強烈的(002)繞射峰,即c軸取向,代表奈米柱呈現準直性的成長。光致螢光圖譜量測(PL),得到品質良
    好的的紫外光放射,綠光缺陷近趨於零。


    Using a chemical vapor deposition (CVD) technique without catalyst introduction, we have successfully prepared ZnO nanorods on an ordinary glass substrate at substrate temperatures higher than 450oC. The catalyst-free fabrication procedure can significantly avoid the formation of impurities. Based on the observation of scanning electron microscope (SEM) images, the well-aligned ZnO nanorods were grown on ordinary glass substrate when source of Zn metal powder was heated up to 600oC. The fabrication was on progress under the mixed flow of oxygen and argon gases with the rates of 30 and 500 sccm, respectively. Our as-deposition nanorods exhibit an average aspect-ratio of 60 which is pretty high for those samples without any further annealed process. The X-ray diffraction (XRD) patterns showed only a diffraction peak of (002). As a result is that our ZnO nanorods exhibit good crystal quality as well as highly c-axis preferred orientation. The photoluminescence (PL) UV emission intensity of these nanorods increases with increasing crystalline quality.

    摘要…………………………………………………………………III 誌謝………………………………………………….………………..V 目錄…………………………………………………….…….……….VI 表目錄…………………………………………………..………….IX 圖目錄……………………………………………………….…….X 第一章 緒論……………………………………………………..1 1-1 奈米科技(nanotechnology)…………………………………….…1 1-2 奈米科技發展史………………………………………………….1 1-3 奈米科技的應用………………………………………………….2 1-4 研究動機………………………………………………………….2 1-5 研究目標………………………………………………………….4 第二章 文獻與理論基礎……………………………....……5 2-1 氧化鋅晶體結構與特性及其應用……………………………….5 2-2 製備氧化鋅奈米柱的方法……………………………………….7 2-3 化學氣相沈積法(Chemical vapor deposition, CVD)……….…....8 2-4 氧化鋅奈米柱的成長機制……………………………………….9 2-4-1 氣-液-固相磊晶機制(VLS)………………………………10 2-4-2 成長高方向性氧化鋅奈米柱(線)………………………..12 2-4-3 氣-固相磊晶機制(VS)…………………………………....15 2-4-4 氧化鋅奈米柱在玻璃上的應用……………………….…17 2-5 氧化鋅之發光特性……………………………………………...20 2-5-1 紫外光放射(UV emission)[57]…………………………..20 2-5-2 綠光放射(Green emission)…………………………….…21 第三章 實驗方法與步驟………………………….……..24 3-1 實驗裝置………………………………………………………...24 3-1-1 玻璃基板………………………………………………….…...24 3-1-2 試片清洗……………………………………………………....24 3-2儀器設備……………………………………………………....….25 3-2-1奈米材料成長之三段式真空高溫爐……………………..25 3-2-2場發射掃描式電子顯微鏡(FESEM)……………………...26 3-2-3 X光繞射儀(X-ray Diffraction) …………………………...27 3-2-4 光致螢光光譜(PL, Photoluminescence) ……………..…..29 3-2-5拉曼光譜儀…………………………………………….…..31 3-3實驗步驟………………………………………………………….33 3-3-1氧化鋅奈米結構的成長,一維氧化鋅奈米結構……..…33 3-3-2 第一區段鋅粉位置變溫………………………….……....33 3-3-3 第二區段基板變溫……………………………………….34 3-3-4 不同位置對氧化鋅奈米柱的影響……………………….35 3-4 實驗流程………………………………………………………...36 第四章 結果與討論………………………………………….37 4-1 鋅源受熱溫度在玻璃上成長氧化鋅奈米柱的影響…………...37 4-2 玻璃基板受熱溫度成長氧化鋅奈米柱的影響………………...40 4-3玻璃基板不同位置對成長氧化鋅奈米柱的影響………………54 第五章 結論……………………………………………………67 參考文獻…………………………………………………………...69

    [1] R. Waser, Nanoelectronics and Information Technology,
    WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
    [2] 翁明壽,奈米材料與奈米科技,東華材料 (2006)。
    [3] Kubo, R.J. Phys. SOC Japan ,17, 975 (1962).
    [4] Binnig, G.; Rohrer, H.; Gerber, Ch.; Weibel, E. Phys.Rev. Lett., 50,
    120(1982).
    [5] H. Sheng,1 N.W. Emanetoglu,1 S. Muthukumar,2 B.V.
    Yakshinskiy,3 S. Feng,1 and Y.Lu1, J.Electron Mater, Vol.32, p.9,
    April 1 2003.
    [6] Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong,Appl.Phys.Lett.
    Vol.77,p.11 , 11 September 2000.
    [7] Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, and Tae-Yeon
    Seong , J.Appl.Phys.Vol.94, p.6 ,15 September 2003.
    [8] Y.G. Wanga, S.P. Laua,, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F.
    Yua, B.K. Taya , Journal of Crystal Growth ,Vol.259 ,p.335–342 , 31
    July 2003.
    [9] Y.R. Ryu, S. Zhu,1, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W.
    White , Journal of Crystal Growth, Vol.216 , p.330-334 ,21 March
    2000.
    [10] Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji .
    Hiraga, Ziqiang Zhu, and Takafumi Yao,J. Appl. Phys., Vol. 84, No.
    7, 1 October (1998).
    [11] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H.
    Koinuma, and Y. Segawa, Solid State Commun. Vol.103,
    pp.459-463 (1997).
    [12] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and
    JNarayan, J. Appl. Phys. Vol.85, pp.7884-7887 (1999).
    [13] Won Il Park, Dong-Wook Kim, Sug Woo Jung, Gyu-Chul Yi .
    International Journal of Nanotechnology ,Vol.3 , No. 2-3 , / 2006.
    [14] Yefan Chen, Darren Bagnall, Takafumi Yao, Materials Science and
    Engineering ,B75 ,190–198(2000).
    [15] D. M. Bagnall, Y. F. Chen, Z. Zhu, and T. Yao, D. M. Bagnall, Y. F.
    Chen, Z. Zhu, and T. Yao,Appl. Phys. Lett. 70 (17), 28 April (1997)
    [16] Pearson's Handbook of Crystallographic Data, 4795.
    [17] Z. Fan, and J. G. Lu, J. Nanosci Nanotechnol. 5, 1561-1573 (2005).
    [18] 張立德、牟季美著,葉瑞銘修校,奈米材料和奈米結構,滄
    海書局,2002, p.5。
    [19] P. D. Yang, Haoquan, S. Mao, R. Russo, J. Johnson, R. Saykally, N.
    Morris, J Pham , R. He, H. J. Choi, Advanced Functional Materials,
    v.12, n.5, p.323-p.331, 2002.
    [20] W. Lee, M. C. Jeong, J. M. Myoung, Acta Materialia, v.52,
    p.3949-p.3957, 2004.
    [21] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba,
    K. ,Nanotechnology, v.15, S382-S388, 2004.
    [22] H. Zhang, X. Ma, J. Xu, J. Niu, D. Yang, v.14, p.423-p.426,
    Nanotechnology, 2003.
    [23] S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, G.
    T. ,Appl. Phys. Lett., v.84, n.24 p.5022-p.5024, 2004.
    [24] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y.
    Zhang, R. J. Saykally, P-D Yang, Angew. Chem. Int. Ed., v.42,
    p.3031-p.3034, 2003.
    [25] G. Zou, D. Yu, D. Wang, W. Zhang, L. Xu, W. Yu, Y, Mater. Chem.
    Phys., v.88, p.150-p.154, 2004.
    [26] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. McDermott, M. A.
    Rodriguez, H. Konishi, H. Xu, Nature Mater., v.2, p.821-p.826,
    2003.
    [27] D. W. Bahnemann, C. Kormann, and M. R. Hoffmann ,J. Phys.
    Chem., v.91, p.3789-p.3798, 1987.
    [28] Y. Li, G. S. Cheng, L. D. Zhang ,J. Mater. Res., v.15, n.11,
    p.2305-p.2308, 2000.
    [29] Y. C. Wang, I. C. Leu, M. H. Hon ,v.5, n.4, p.C53-C55, 2002.
    [30] C. Liu, J. Antonio Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y.
    Lifshits, S. T. Lee, Adv. Mater. , v.15, n.10, p838-p.841, 2003.
    [31] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho,
    R. Martins ,Vacuum, v.64, p.281-p.285, 2002.
    [32] C. E. Rice, G. S. Tompa, L. G. Provost, N. Sbrockey, J.
    Cuchiaro ,MRS Symp. Proc., v.764, p.1 17-122.
    [33] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang, Y.
    Segawa ,Thin solid Films, v.433, n.1-2, p.131-p.134, 2003.
    [34] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, J.
    Cryst. Growth, v.221, n.1-4, p.431-p.434, 2000.
    [35] Ma, Jin; Ji, Feng; Ma, Hong-Iei; Li, Shu-ying ,J. Vacuum Science &
    Technology A: Vacuum, Surfaces, and Films, v.13, n.1, p.92-p.94,
    1995.
    [36] J. H. Lee, B. O. Park ,Thin Solid Films, v.426, p.94-p.99, 2003.
    [37] S. H. Bae, S. Y. Lee, B. J. Jin, S. Im ,Appl. Surf. Sci., v.154-155,
    p.458-p.461, 2000.
    [38] Z. Li, W. Gao ,Materials Letters, v.58, p.1363-p.1370, 2004.
    [39] S. G. David, C. Bright, Transparent Conducting Oxides, MRS
    Bulletin, n.8, p.15-p.21, 2000.
    [40] 莊達人,VLSI 製造技術,高利圖書股份有限公司,1995 年。
    [41] R. S. Wagner and W. C. Ellis, APPLIED PHYSICS LETTERS,
    Volume 4, Number 5, 1 March 1964.
    [42] Yiying Wu and Peidong Yang , J. Am. Chem. Soc. 123, 3165-3166
    (2001).
    [43] P. Yang et al. ,science. 292(2001)1897.
    [44] 劉思呈, 一維氧化鋅奈米結構之成長與特性分析,國立成功大
    學,博士論文(2004)。
    [45] H. J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias,
    U. Gosele, A. Dadgar, A. Krost ,Superlattices and Microstructures.
    36(2004) 95–105.
    [46] W. I. Park, D. H. Kim, S. -W. Jung, Gyu-Chul Yi ,Appl. Phys. Lett.
    80(2002)4232.
    [47] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,
    Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong
    Yang , SCIENCE VOL 292 8 JUNE 2001.
    [48] P. Yang et al. ,Adv. Funct. Mater. 12(2002)323.
    [49] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,
    Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong
    Yang , SCIENCE VOL 292 8 JUNE 2001.
    [50] P. Yang and C. M. Lieber ,J. Mater. Res, 12, 2981, (1997).
    [51] Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B.
    Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83 (2003) 144.
    [52] M. Yan, H.T. Zhang, E.J. Widjaja, R.P.H. Chang, J. Appl. Phys. 94
    (2003) 5240.
    [53] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber,
    R. Russo, P. Yang, Science 292 (2001) 1897.
    [54] H.Z. Zhang, X.C. Sun, R.M. Wang, D.P. Yu , Journal of Crystal
    Growth 269 (2004) 464–471.
    [55] Hongtao Yuan, Yao Zhang , Journal of Crystal Growth 263 (2004)
    119–124.
    [56] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen,
    and X. G. Kong ,Lumine. vol. 99, nol. 2, pp. 149,(2002).
    [57] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A.
    Voigt, B. E. Gande ,J. Appl. Phys, 79 (10), 7983,(1996).
    [58] 廖泓洲,國立交通大學材料科學與工程學系碩士論文,2005 年。
    [59] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A.
    Voigt, B. E. Gande ,J. Appl. Phys, 79 (10), 7983,(1996).
    [60] Bixia Lin and Zhuxi Fu, Yunbo Jia ,Appl. Phys. Lett,79(7),
    943-945 ,(2001).
    [61] Wei Li, Dongsheng Mao, Fumin Zhang, Xi Wang, Xianghuai Liu,
    Shichang Zou, YuKun Zhu, Qiong Li, Nuclear Instruments and
    Methods in Physics Research B 2000, 169,59.
    [62] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J.
    A.Voigt, B. E. Gnade, J. Appl. Phys. 79 (10), 15 May 1996.
    [63] Bixia Lin and Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett., Vol.79,No.7,13
    August 2001.
    [64] Kisi, E.H., Elcombe, M.M., Acta crystallogr., Sec. C, 45,
    1867(1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE