簡易檢索 / 詳目顯示

研究生: 陳煜杰
Chen, Yu-Chieh
論文名稱: 銅氧化物/金/氧化鋅奈米複合材料應用於二氧化氮氣體感測及溫濕度效應分析
Copper Oxide/Gold/Zinc Oxide Nanocomposites for Nitrogen Dioxide Gas Sensing and Analysis of Temperature and Humidity Effects
指導教授: 林鶴南
Lin, Heh-Nan
口試委員: 李紫原
Lee, Chi-Young
廖建能
Liao, Chien-Neng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化鋅二氧化氮氣體感測溫濕度效應奈米複合材料銅氧化物
外文關鍵詞: Zinc oxide, nitrogen dioxide, gas sensing, temperature and humidity effect, nanocomposites, copper oxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗製作銅氧化物/金/氧化鋅以及金/銅氧化物/氧化鋅三元奈米複合材料,應用於化學電阻式二氧化氮氣體感測,同時也探討溫度及濕度對奈米複合材料電阻值及氣體感測響應之影響,
      首先以黃光微影以及電子束蒸鍍技術,在矽晶圓上製作金/鈦金屬電極,寬度與間距分別為30、15 μm,而後利用低溫水熱法成長氧化鋅奈米柱於矽基板上,再藉由光還原法將銅氧化物以及金奈米粒子添加至氧化鋅奈米柱上,形成氧化鋅三元奈米材料,並作為氣體感測元件。
      由掃描式電子顯微鏡觀察材料的表面形貌,可見氧化鋅呈現直徑約為100 nm之六角柱狀結構,並且彼此隨機交錯;金/銅氧化物/氧化鋅試片表面充滿分布均勻、直徑約為400 nm的銅氧化物顆粒,其表面具有許多微小金顆粒;而銅氧化物/金/氧化鋅試片則出現氧化鋅奈米柱表面覆蓋滿滿銅氧化物的現象。
      我們將因氣體吸附而造成的電阻變化率稱為響應,在25 ℃、20%濕度下,銅氧化物/金/氧化鋅電阻值則約為32.4 kΩ,通100 ppb NO2¬後的電阻值上升為73.5 kΩ,響應為127%。金/銅氧化物/氧化鋅電阻值則約為19.5 kΩ,通100 ppb NO2¬後的電阻值為33.1 kΩ,響應為70%。因銅氧化物/金/氧化鋅之氣體感測響應較高,因此我們針對銅氧化物/金/氧化鋅試片做了溫濕度效應分析。
      我們分別在環境溫度25 ℃、35 ℃下進行不同濕度的電阻值測量,在環境溫度25 ℃下,試片在20%濕度時之電阻值為29.4 kΩ,80%濕度時之電阻值為57.9 kΩ,差異率為97%;在環境溫度35 ℃下,試片在20%濕度時之電阻值為22.5 kΩ,80%濕度時之電阻值為35.7 kΩ,差異率為76%。
      在不同溫濕度下,進行100 ppb NO2¬氣體感測,在環境溫度25 ℃下,濕度20%時之響應為127%,持續上升至濕度65%時達最大響應274%,濕度80%時響應則下降為118%;在環境溫度35 ℃下,試片濕度20%時之響應為23%,持續上升至濕度80%時之響應93%。
      總而言之,我們製作了銅氧化物/金/氧化鋅及金/銅氧化物/氧化鋅三元奈米複合材料,並應用於化學電阻式二氧化氮氣體感測。銅氧化物/金/氧化鋅奈米複合材料具有較高的氣體感測響應,在環境溫度25 ℃下,對100 ppb NO2的響應,濕度20%時為127%,濕度65%時為274%,而濕度80%時為118%。也發現試片電阻隨著濕度上升而增加,在25 ℃及35 ℃下之電阻差異率分別為97%及76%。


      In this work, we produced ternary nanocomposites comprising of copper oxide/gold/zinc oxide and gold/copper oxide/zinc oxide for chemiresistive NO2 gas sensing under ambient environment. The effects of environmental temperature and humidity on the resistance and gas sensing performance were also investigated.
      ZnO nanorods (NRs) were first grown by a low-temperature hydrothermal method on a Si substrate with pre-patterned Au/Ti electrodes prepared by photolithography. The length and width of an electrode pair were 30 and 15 μm, respectively. CuxO and Au nanoparticles (NPs) were then added in alternate orders to ZnO NRs by a photoreduction method, thus forming ternary nanocomposites.
      The morphologies of the ternary nanocomposites were characterized by scanning electron microscopy. The ZnO NRs had a hexagonal shape with a diameter of around 100 nm. The Au/CuxO/ZnO nanocomposite showed many CuxO NPs with a size of around 400 nm. Au NPs were found mainly on CuxO NPs with uniform distribution. On the other hand, the CuxO/Au/ZnO nanocomposite showed the coverage of CuxO NPs on ZnO NRs with Au NPs in between.
      The sensing response was calculated by measuring the ratio of resistance increase caused by gas adsorption. At 25 ℃ and 20% relative humidity (RH), the resistance of CuxO/Au/ZnO was 32.4 kΩ and increased to 73.5 kΩ after 100 ppb NO2 injection, giving a response of 127%. The resistance of Au/CuxO/ZnO was 19.5 kΩ and increased to 33.1 kΩ after 100 ppb NO2 injection, giving a response of 70%. Since the response of CuxO/Au/ZnO was higher, we analyzed the temperature and humidity effects for the CuxO/Au/ZnO sample.
      The CuxO/Au/ZnO resistance was measured at 25 and 35 ℃ under varying RH. At 25 ℃, the resistances were 29.4 kΩ at 20% RH and 57.9 kΩ at 80% RH, giving a variation of 97%. At 35 ℃, the resistances were 22.5 kΩ at 20% RH and 35.7 kΩ at 80% RH, giving a variation of 76%.
      We conducted 100 ppb NO2 gas sensing for the CuxO/Au/ZnO sample at 25 and 35 ℃ under varying RH. At 25 ℃, the response started with a value of 127% at 20% RH, increased till 65% RH with a maximum response of 274%, and decreased to 118% at 80% RH. At 35 ℃, the response started with a value of 23% and increased monotonically to 93% at 80% RH.
      In conclusion, we produced CuxO/Au/ZnO and Au/CuxO/ZnO ternary nanocomposites for chemiresistive NO2 gas sensing. The CuxO/Au/ZnO nanocomposite showed better performance with a response of 127% at 20% RH, 274% at 65% RH, and 118% at 80% RH at 25 ℃ upon exposure to 100 ppb NO2. It was also found that the resistance increased as the humidity increased with variations of 97% and 76% at 25 and 35 ℃, respectively.

    中文摘要 II Abstract IV 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 氧化鋅概論 4 2.1.1 晶體結構 4 2.1.2 成長機制與方法 6 2.1.3 氧化鋅的n-type半導體性質 9 2.1.4 氧化鋅的光學性質 11 2.2 氣體感測原理 12 2.2.1 氣體吸脫附 13 2.2.2 氧化鋅與二氧化氮的吸附反應 15 2.2.3 感測元件之回復特性 16 2.3 金屬氧化物複合材料提高氣體感測響應 20 2.3.1 銅氧化物 21 2.3.2 貴金屬 25 2.4 光還原法 24 2.5.1 銅氧化物 24 2.5.2 金奈米粒子 25 第三章 實驗儀器與方法 26 3.1 感測元件製作流程 26 3.2.1 基板電極製作 26 3.2.2 氧化鋅奈米線成長 27 3.2.3 退火熱處理 28 3.2.4 銅氧化物與金結構之修飾 29 3.2 感測元件分析儀器 30 3.3.1 掃描式電子顯微鏡 30 3.3.2 能量色散X射線光譜儀 30 3.3.3 螢光光譜儀 30 3.3 氣體感測 30 3.4.1 氣體感測系統架構 31 3.4.2 二氧化氮氣體濃度計算 33 3.4.3 溫濕度效應與氣體感測實驗操作步驟 34 第四章 結果與討論 36 4.1 材料分析 36 4.1.1 表面形貌 36 4.1.2 元素組成分析 38 4.1.3 光致發光性質 40 4.2 二氧化氮氣體感測 42 4.3 溫濕度效應對氧化鋅複合材料電阻值之影響 45 4.4 溫濕度效應對氧化鋅複合材料的二氧化氮感測響應之影響 51 4.5 溫濕度效應機制探討 55 4.6 手持式氣體感測器 58 4.3.1 手持式氣體感測器之架構及原理 58 4.3.2 提升晶片溫度應用於手持式氣體感測器 59 第五章 結論 62 參考文獻 64

    1. A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators B: Chemical, 2012, 171-172: p. 25-42.
    2. L. B. Kreuzer, C. K. N. Patel, Nitric oxide air pollution: Detection by optoacoustic spectroscopy. Science, 1971, 173(3991): p. 45-47.
    3. B. P. J. de Lacy Costello et al., R. J. Ewen, P. R. H. Jones, N. M. Ratcliffe, R. K. M. Wat, A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide. Sensors and Actuators B: Chemical, 1999, 61(1-3): p. 199-207.
    4. M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Characterization of a nanosized TiO2 gas sensor. Nanostructured Materials, 1996, 7(7): p. 709-718.
    5. Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, Metal oxide nanostructures and their gas sensing properties: A review. Sensors, 2012, 12(3): p. 2610-2631.
    6. W. Wu, S. Bai, N. Cui, F. Ma, Z. Wei, Y. Qin, and E. Xie, Increasing UV photon response of ZnO sensor with nanowires array. Science of Advanced Materials, 2010, 2(3): p. 402-406.
    7. Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Goswami, Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012, 2012: p. 20.
    8. Z. L. Wang, Zinc oxide nanostructures: Growth, properties and applications. Journal of Physics: Condensed Matter, 2004, 16(25): p. R829-R858.
    9. R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Letters, 2014, 7(2): p. 97-120.
    10. L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey. Journal of Sol-Gel Science and Technology, 2006, 39(1): p. 7-24.
    11. V. Strano, et al., Double role of hmta in ZnO nanorods grown by chemical bath deposition. The Journal of Physical Chemistry C, 2014, 118(48): p. 28189-28195.
    12. K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004, 14: p. 2575-2591.
    13. M. N. R. Ashfold, R.P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, Y. Sun, The kinetics of hydrothermal growth of ZnO nanostructures. Thin Solid Fims, 2007, 515: p. 8679-8683.
    14. S. Baruah and J. Dutta, Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009, 10(1): p. 013001.
    15. A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006, 39(1): p. 49-56.
    16. L. Schmidt-Mende and J. L. Macmanus-Driscoll, ZnO – nanostructures, defects, and devices. Materials Today, 2007, 10(5): p. 40-48.
    17. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 2009, 105(1): p. 013502.
    18. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical, 2011, 160(1): p. 580-591.
    19. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sensors and Actuators B: Chemical, 2009, 138(1): p. 168-173.
    20. C. Wang, et al., Metal oxide gas sensors: Sensitivity and influencing factors. Sensors, 2010, 10(3): p. 2088-2106.
    21. L. Liao, et al., Size dependence of gas sensitivity of ZnO nanorods. The Journal of Physical Chemistry C, 2007, 111(5): p. 1900-1903.
    22. D. R. Miller, S. A. Akbar, and P. A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014, 204: p. 250-272.
    23. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-Zadeh, Characterization of ZnO nanobelt-based gas sensor for H-2, NO2, and hydrocarbon sensing. IEEE Sensors Journal, 2007, 7(5-6): p. 919-924.
    24. X. Geng, C. Zhang, Y. Luo, and M. Debliquy, Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1−x coatings deposited on polypropylene papers by suspension flame spraying. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: p. 280-286.
    25. M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied Physics Letters, 2008, 93(26): p. 263103.
    26. X. Geng, C. Zhang, Y. Luo, H. Liao, and M. Debliquy, Light assisted room-temperature NO2 sensors with enhanced performance based on black SnO1-α@ZnO1-β@SnO2-γ nanocomposite coatings deposited by solution precursor plasma spray. Ceramics International, 2017, 43(8): p. 5990-5998.
    27. S.-W. Fan, et al., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters, 2009, 95: p. 142106.
    28. C.-C. Liu, J.-H. Li, C.-C. Chang, Y.-C. Chao, H.-F. Meng, S.-F. Horng, C.-H. Hung, and T.-C. Meng, Selective real-time nitric oxide detection by functionalized zinc oxide. Journal of Physics D: Applied Physics, 2009, 42(15): p. 155105.
    29. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 2007, 7(4): p. 1003-1009.
    30. S.-W. Fan, A. K. Srivastava, and V. P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters, 2009, 95(14): p. 142106.
    31. J. Wang, P. Yang and X. Wei, High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Applied Materials & Interfaces, 2015, 7: p. 3816-3824.
    32. P. Chaudhari and S. Mishra, Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature. Measurement, 2016, 90: p. 468-474.
    33. J. Zhou, M. Ikram, A. U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li and K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sensors and Actuators B: Chemical, 2018, 255: p. 1819-1830.
    34. M. Bao, Y. Chen, F. Li, J. Ma, T. Lv, Y. Tang, L. Chen, Z. Xu and T. Wang, Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale, 2014, 6: p. 4063-4066.
    35. L.-Y. Hong, et al., Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Materials Letters, 2016, 185: p. 243-246.
    36. M.-Y. Chaing, et al., Enhanced photocatalysis of ZnO nanowires co-modified with cuprous oxide and silver nanoparticles. Materials Letters, 2015, 160: p. 440-443.
    37. N. S. Ramgir, P. K. Sharma, N. Datta, M. Kaur, A. K. Debnath, D. K. Aswal and S. K. Gupta, Room temperature H2S sensor based on Au modified ZnO nanowires. Sensors and Actuators B: Chemical, 2013, 186: p. 718-726.
    38. Z. Zhu, C.-T. Kao and R.-J. Wu, A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Applied Surface Science, 2014, 320: p. 348-355.
    39. S.-C. Wang and M. O. Shaikh, A room temperature h2 sensor fabricated using high performance Pt-loaded SnO2 nanoparticles. Sensors, 2015, 15(6): p. 14286-14297.
    40. L. Chandra, P. K. Sahu, R. Dwivedi and V. N. Mishra, Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature. Materials Research Express, 2017, 4: p. 125017.
    41. D. V. Ponnuvelu, et. al, Rapid synthesis and characterization of hybrid ZnO@Au core–shell nanorods for high performance, low temperature NO2 gas sensor applications. Applied Surface Science, 2015. 355: p. 726-735.
    42. M. Grätzel, Photoelectrochemical cells. Nature, 2001, 414: p.338-344.
    43. T. Wang, R. Lv, P. Zhang, C. Li, J. Gong, Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale, 2015, 7: p.77-81.
    44. G. Heiland, D. Kohl, in: T. Seiyama (Ed.), Chemical Sensor Technology, 1988, 1: p. 15-38.
    45. Z. Bai, et al., Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor. Materials Science and Engineering: B, 2008, 149(1): p. 12-17.
    46. G. Lu, et al., UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2012, 162: p. 82-88.

    QR CODE