簡易檢索 / 詳目顯示

研究生: 蔡姿婷
Tsai, Tzu-Ting
論文名稱: 堆疊式高介電電荷儲存層對電荷陷阱式快閃記憶體元件之影響
Effects of Stacked High-K Charge trapping layers on Charge Trapping-type Flash Memory Device
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 高介電電荷儲存層氮化矽
外文關鍵詞: HfAlO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當浮動式閘極結構之快閃記憶體無法滿足元件微縮的發展時,SONOS-type是取代浮動閘極結構的熱門候選者之一。但是,以氮化矽為電荷儲存層之SONOS快閃記憶體發展到次微米以下時並無法再以降低穿隧氧化層的方式來提高寫入速度,故有很多文獻將以高介電係數材料來取代氮化矽來當作電荷儲存層,但此時面臨到的考驗將會是電荷保持力的持久度。
    本實驗將利用不同高介電係數材料以及氮化矽將以堆疊的方式堆疊出電荷儲存層,研究主要是利用不同材料具有不同的特性,配合堆疊式的結構,藉著電荷陷阱密度的多寡、材料結晶溫度的高低、能隙大小的改變、K值影響分壓的不同、陷阱能階的深淺等種種原因,利用能帶工程堆疊出最恰當的電荷儲存層。
    由實驗結果得知,不同Hf/Al組成比之HfxAlyO與Si3N4堆疊出的電荷儲存層,會因為Hf:Al比例不同,造成能隙的變化,進而影響操作速度;另外也會因為操作電壓不同,改變主導機制,而呈現不同的寫入/抹除/電荷保持力元件效能。同樣的,不同Hf/Al組成比之HfxAlyO與La2O3堆疊出不同的電荷儲存層,也會受這些情況的影響,此外更探討了退火溫度所帶來的效應。


    第一章 序論 1.1 前言 1.2快閃記憶體面臨問題 1.3 SONOS快閃記憶體的結構及其優點與面臨問題 1.4 High-K 材料應用在快閃記憶體的儲存層上 1.5 各章摘要 第二章 快閃記憶體元件操作方法 2.1寫入與擦拭方法 2.1.1通道熱電子注入寫入 2.1.2 F-N穿隧寫入 2.1.3 F-N穿隧擦拭 2.2耐力 2.3干擾 2.4電荷保持 第三章 實驗規劃及元件製程 3.1 實驗規劃 3.2 電容元件製程 3.2.1 電容前段製程 3.2.2 成長穿隧氧化層 3.2.3 沈積電荷儲存層及阻擋氧化層 3.2.4後段製程 第四章 Si3N4搭配各種組成比HfxAlyO堆疊之電荷儲存層對電荷陷阱式快閃記憶體元件的影響 4.1研究背景與目的 4.2實驗規劃及製程 4.3實驗結果與討論 4.3.1堆疊式雙層與單層電荷儲存層之比較 4.3.2 Si3N4與不同組成比之HfxAlyO搭配作堆疊式雙層 電荷儲存層之比較 4.4結論 第五章 高介電材料La2O3與HfxAlyO堆疊與單層HfxAlyO之電荷儲存層對電荷陷阱式快閃記憶體元件之特性研究 5.1研究背景與目的 5.2實驗規劃及製程 5.3實驗結果與討論 5.3.1阻擋氧化層之最佳化退火溫度比較 5.3.2 La2O3和HfAlO(Hf:Al=1:1)堆疊做雙層電荷儲存層, 與單層的HfAlO(Hf:Al=1:1)電荷儲存層之比較 5.3.3 La2O3和HfO2堆疊做雙層電荷儲存層, 與單層的HfO2電荷儲存層之比較 5.4結論 第六章 高介電材料La2O3與不同組成比HfxAlyO堆疊之電荷儲存層以及不同退火溫度對電荷陷阱式快閃記憶體元件 之特性研究 6.1研究背景與目的 6.2實驗規劃及製程 6.3實驗結果與討論 6.3.1雙層La2O3與HfxAlyO,堆疊成不同結構之電荷儲存層, 對元件操作特性影響之比較 6.3.2 不同的退火溫度對La2O3和HfO2堆疊成的 雙層式電荷儲存層之特性影響 6.4結論 第七章 結論與建議 7-1結論 7-2建議

    [1] Corporation Flash Memory Group, "Technology Scaling Impact on NOR and NAND Flash Memories and Their Applications" IEEE, Page(s):697 - 700, Oct. 2006
    [2] Min She, Semiconductor Flash Memory Scaling, 2003
    [3] 薛富元,由模擬來探討Floating Gate Memory及SONOS元件微小化之極限,國立清華大學電子工程研究所, 碩士論文, 2004
    [4] Yan-Ny Tan, et al., ”Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer”, IEEE Transactions on Electron Device ,Vol.51, No.7, Page(s):1143 - 1147,JULY,2004
    [5] Jan Van Houdt, et al., “High-k materials for nonvolatile memory applications”, IEEE Physics Symposium, Page(s):234 - 239, April 17-21, 2005
    [6] Moon Sig Joo, et al., ”Dependence of Chemical Composition Ratio on Electrical Properties of HfO2-Al2O3 Gate Dielectric”, Jpn. J. Appl. Phys., No.3A, Pl220-l222, MARCH 2003.
    [7] W. J. Zhu, et al., ”Effect of Al Inclusion in HfO2 on the Physical and electrical properties of the dielectrics”, IEEE Electron Device Letters, Vol.23, No.11, Page(s):649 - 651, 2002
    [8] G. Molas et al. / Solid-State Electronics 51 (2007) 1540-1546,2007
    [9] Yan Ny Tan "Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation" IEEE Transactions on Electron Devices, VOL. 53, NO. 4, Page(s):654 - 662 , APRIL 2006
    [10] Hang-Ting Lue, et al., ”BE-SONOS A bandgap engineered SONOS with excellent performance and reliability”, IEEE International Electron Devices Meeting, Page(s):547 - 550, 5-7 Dec 2005
    [11] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, Vol.5, P5-2383 5-2390, 2001
    [12] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.20, No.2., Page(s):190 - 195, JUNE 1997
    [13] W. J. Tsai, et al., “Data retention behavior of a SONOS type two-bit storage flash memory cell”, IEEE International Electron Devices Meeting, Page(s):32.6.1 - 32.6.4, 2001
    [14] K. Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices, Vol.42, No.1, Page(s):150 - 159, JANUARY 1995
    [15] Verma, et al., ”Reliability Performance of ETOX Based Flash Memory”, International Reliability Physics Symp, P.158, 1998
    [16] Haddad, et al., ”Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, P.117, Mar. 1989.
    [17] 林冠良”Metal Contamination effects on the electrical Characteristic of PN junction and MOS Capacitance”, 逢甲電子, 2004
    [18] Ping-Hung Tsai ”Novel SONOS-Type Nonvolatile Memory Device with Suitable Band Offset in HfAlO Charge-Trapping Layer”, IEEE, 2007
    [19] Ping-Hung Tsai, et al., ”Novel SONOS-Type Nonvolatile Memory Device With Optimal Al Doping in HfAlO Charge-Trapping Layer” IEEE Electron Device Letters,VOL.29,NO.3, Page(s):265 - 268,MARCH 2008
    [20] Naoto Umezawa,et al., ” The Role of Nitrogen Incorporation in Hf-based High-k Dielectrics: Reduction in Electron Charge Traps”, IEEE Proceedings of ESSDERC, France,p201. , 2005

    [21] Y.Q.Wang,et al., “Fast erasing and highly reliable MONOS type memory with HfO2 high-k trapping layer and Si3N4/SiO2 tunneling stack” IEEE IEDM 11-13,Page(s):1 - 4, Dec. 2006
    [22] Zong Liang Huo, et al., “Band Engineered Charge Trap Layer for highly Reliable MLC Flash Memory” Symposium on VLSI Technology Digest of Technical Papers 12-14, Page(s):138 - 139 June 2007
    [23] Tung-Sheng Chen, et al., ”Performance Improvement of SONOS Memory by Bandgap Engineering of Charge-Trapping Layer” IEEE JNL Page(s):205 - 207, April 2004
    [24] Gabriel Molas” Investigation of hafnium-aluminate alloys in view of integration an interpoly dielectrics of future Flash memories”, Solid-State Electronics, 2007
    [25] S. Ohmi ”Rare Earth Metal Oxides for H-κ Gate Insulator” ECS,Mar.2006
    [26]C. H. Wu, IEDM, 2006
    [27] K. Ohmori ”Controllability of Flatband Voltage in High-k Gate Stack Structures- Remarkable Advantages of La2O3 over HfO2” IEEE, 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE