研究生: |
袁惠卿 Yuan, Hui-Ching |
---|---|
論文名稱: |
奈米鑽石/薄層石墨烯複合材料之熱傳導性質研究 Investigation on the Thermal Properties of Nanodiamond/Thin-layer Graphene Composite films |
指導教授: |
李紫原
Lee, Chi-Young 戴念華 Tai, Nyan-Hwa |
口試委員: |
葉孟考
Yeh, Meng-Kao 徐文光 Hsu, Wen-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 石墨烯 、奈米鑽石 、聚多巴胺 、高異向性熱傳導係數 |
外文關鍵詞: | graphene, nanodiamond, polydopamine, anisotropic thermal conductivity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電子元件的微型化,使得散熱問題漸趨備受重視,因此,本研究的目的在於製備一種具有高導熱效率之薄膜材料,並期藉由調整材料的組成,改變其熱傳遞路徑,進而得以設計在垂直元件方向與平行元件方向上的異向性,而應用於電子產業中熱管理相關領域。
本實驗利用真空抽濾法及高溫熱處理(800C)的環境,製備出含奈米鑽石(ND)與石墨烯(rGO)之複合膜(ND/rGO)以及包覆聚多巴胺之奈米鑽石(ND-pDA)與石墨烯(rGO)之複合膜(ND-pDA/rGO),並利用雷射閃光法量測其在平行平面方向(in-plane)與垂直平面方向(through-plane)之熱傳導係數。本研究探討多巴胺的添加對複合膜形貌及熱傳性質的影響,並比較不同ND-pDA添加量對導熱異向性造成的改變,接著再將複合膜置於不同溫度下量測其熱傳性質,以探討變溫下熱傳導特性的變化。
實驗結果顯示,多巴胺的添加可使ND-pDA/rGO複合膜維持有利於聲子傳遞的緊密結構;此外,其熱還原後所形成的碳殼亦可大幅提升熱傳導性質。當ND-pDA添加量增加時,through-plane方向之熱傳導係數(K)隨之增加;in-plane方向之熱傳導係數(K//)則隨之漸減。在25C下,當ND-pDA/rGO複合膜內ND含量由20 mg增加至80 mg時,K由0.677 W/mK上升至1.004 W/mK,而K//則由1406.2 W/mK下降至457.2 W/mK;意即複合膜之熱傳異向性(K///K)隨著ND-pDA的添加而下降。當溫度上升至100 oC時,含有20mg ND之ND-pDA/rGO複合膜(20ND-pDA/20rGO)之K與K//皆分別提升至0.882 W/mK 與1899.7 W/mK。由此可知,本實驗所製備之ND-pDA/rGO複合膜即使於高溫下仍具高導熱性,且其熱傳導異向性亦具可調性,故能達到重量輕之高散熱薄膜材料的目標。
Owing to the development of miniaturization of modern electronic devices, effective thermal management becomes a key issue to prevent the devices from overheating. Therefore, fabrication of lightweight thin films with tunable thermal anisotropy has attracted much attention recently.
In this work, we successfully fabricated ND-pDA/rGO hybrid films using the vacuum-filtration process followed by a heat treatment at 800C. The thermal conductivities in in-plane (K//) and through-plane (K) directions were measured by the laser flash method to better understand how the addition of dopamine, the amount of ND-pDA, and temperature affected the thermal properties of the hybrid films.
The experimental results showed that the addition of dopamine could maintain the dense structure of ND-pDA/rGO hybrid films, which is favorable for phonon transport, and thus remarkably increased their thermal properties. Besides, film with lower ND-pDA loading possessed higher in-plane but lower through-plane thermal conductivity. K was increased from 0.677 W/mK for 20ND-pDA/20rGO to 1.004 W/mK for 80ND-pDA/20rGO while K// was decreased from 1406.2 W/mK to 457.2 W/mK at 25C. Therefore, the anisotropy of thermal conductivity (K///K) was decreased with the amount of ND-pDA. As temperature increased to 100C, both the K// and K of 20ND-pDA/20rGO were increased to 1899.7 W/mK and 0.882 W/mK, respectively. Maintaining such high thermal conductivities at high temperature, the hybrid films were believed to achieve the goal for thermal interface materials with lightweight and high heat transfer properties.
[1] D. Chung, Materials for thermal conduction, Appl. Therm. Eng. 21 (2001) 1593-1605.
[2] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (2011) 569-581.
[3] J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A.I. Cocemasov, D.L. Nika, A.A. Balandin, Strongly Anisotropic Thermal Conductivity of Free‐Standing Reduced Graphene Oxide Films Annealed at High Temperature, Adv. Funct. Mater. 25 (2015) 4664-4672.
[4] J. Zhang, G. Shi, C. Jiang, S. Ju, D. Jiang, 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High‐Performance Lateral Heat Spreader, Small 11 (2015) 6197-6204.
[5] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.
[6] M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics, Solid State Commun. 143 (2007) 3-13.
[7] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666-669.
[8] G.R. Yazdi, T. Iakimov, R. Yakimova, Epitaxial Graphene on SiC: A Review of Growth and Characterization, Crystal 6 (2016) 53.
[9] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-Based Ultracapacitors, Nano lett. 8 (2008) 3498-3502.
[10] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321(5887) (2008) 385-388.
[11] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science 320 (2008) 1308-1308.
[12] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano lett. 8 (2008) 902-907.
[13] L. Wei, P.K. Kuo, R.L. Thomas, T.R. Anthony, W.F. Banholzer, Thermal Conductivity of Isotopically Modified Single Crystal Diamond, Phys. Rev. Lett. 70 (1993) 3764-3767.
[14] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.
[15] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nano 3 (2008) 206-209.
[16] K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200.
[17] A.d.H. Walt, B. Claire, W. Xiaosong, S. Mike, H. Yike, R. Ming, A.S. Joseph, N.F. Phillip, H. Robert, P. Benjamin, F. Clément, P. Marek, M. Jeong-Sun, Epitaxial graphene electronic structure and transport, J. Phys. D: Appl. Phys. 43 (2010) 374007.
[18] A.J. Van Bommel, J.E. Crombeen, A. Van Tooren, LEED and Auger electron observations of the SiC(0001) surface, Surf. Sci. 48 (1975) 463-472.
[19] A.J. Strudwick, N.E. Weber, M.G. Schwab, M. Kettner, R.T. Weitz, J.R. Wünsch, K. Müllen, H. Sachdev, Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres, ACS Nano 9 (2015) 31-42.
[20] B.C. Brodie, On the Atomic Weight of Graphite, Philos. Trans. R. Soc. London 149 (1859), 249–259.
[21] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339-1339.
[22] R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Adv. 6 (2016) 64993-65011.
[23] O.C. Compton, S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials, Small 6 (2010) 711-723.
[24] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Adv. Funct. Mater. 19 (2009) 1987-1992.
[25] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
[26] V.Y. Dolmatov, T. Fujimura, Physical and Chemical Problems of Modification of Detonation Nanodiamond Surface Properties, in: D.M. Gruen, O.A. Shenderova, A.Y. Vul’ (Eds.), Synthesis, Properties and Applications of Ultrananocrystalline Diamond: Proceedings of the NATO Advanced Research Workshop on Synthesis, Properties and Applications of Ultrananocrystalline Diamond St. Petersburg, Russia 7–10 June 2004, Springer Netherlands, Dordrecht, 2005, pp. 217-230.
[27] D. Ho, C.H.K. Wang, E.K.H. Chow, Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine, Sci. Adv. 1 (2015).
[28] B.I. Kharisov, O.V. Kharissova, L. Chávez-Guerrero, Synthesis Techniques, Properties, and Applications of Nanodiamonds, Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 40 (2010) 84-101.
[29] Y.G. Gogotsi, K.G. Nickel, P. Kofstad, Hydrothermal synthesis of diamond from diamond-seeded [small beta]-SiC powder, J. Mater. Chem. 5 (1995) 2313-2314.
[30] D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids, Diamond Relat. Mater. 18 (2009) 177-180.
[31] L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid, Diamond Relat. Mater. 16 (2007) 725-729.
[32] V.S. Purohit, J. Deepti, V.G. Sathe, V. Ganesan, S.V. Bhoraskar, Synthesis of nanocrystalline diamonds by microwave plasma, J. Phys. D: Appl. Phys. 40 (2007) 1794.
[33] D. Valerii Yu, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russ. Chem. Rev. 76 (2007) 339.
[34] J.P. Holman, Heat Transfer 10th ed., McGraw-Hill publications, 2000.
[35] D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials, J. Electron. Packag. 138 (2016) 040802-1-19.
[36] Numan Yüksel (2016). The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials, Insulation Materials in Context of Sustainability, Dr. Amjad Almusaed (Ed.), InTech, DOI: 10.5772/64157. Available from: https://www.intechopen.com/books/insulation-materials-in-context-of-sustainability/the-review-of-some-commonly-used-methods-and-techniques-to-measure-the-thermal-conductivity-of-insul
[37] G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: A review, Renew. Sustainable Energy Rev. 14 (2010) 1913-1924.
[38] T. Log, S.E. Gustafsson, Transient plane source (TPS) technique for measuring thermal transport properties of building materials, Fire Mater. 19 (1995) 43-49.
[39] S.A. AL-Ajlan, Measurements of thermal properties of insulation materials by using transient plane source technique, Appl. Therm. Eng. 26 (2006) 2184–2191.
[40] D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, Thermal conductivity of thin films: Measurements and understanding, J. Vac. Sci. Technol. A 7 (1989) 1259-1266.
[41] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys. 32 (1961) 1679-1684.
[42] W. Feng, M. Qin, Y. Feng, Toward highly thermally conductive all-carbon composites: Structure control, Carbon 109 (2016) 575-597.
[43] E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bull. 37 (2012) 1273-1281.
[44] Q.Q. Kong, Z. Liu, J.G. Gao, C.M. Chen, Q. Zhang, G. Zhou, Z.C. Tao, X.H. Zhang, M.Z. Wang, F. Li, R. Cai, Hierarchical Graphene–Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader, Adv. Funct. Mater. 24 (2014) 4222-4228.
[45] Y.J. Chen, D.D. Nguyen, M.Y. Shen, M.C. Yip, N.H. Tai, Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites, Composites Part A 44 (2013) 40-46.
[46] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc. 130 (2008) 5856-5857.
[47] S.J. An, Y. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, R.S. Ruoff, Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition, J. Phys. Chem. Lett. 1 (2010) 1259-1263.
[48] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nano 4 (2009) 25-29.
[49] J. Xiang, L.T. Drzal, Thermal conductivity of exfoliated graphite nanoplatelet paper, Carbon 49 (2011) 773-778.
[50] P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.H. Kim, C.M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon 94 (2015) 494-500.
[51] Z.L. Hou, W.L. Song, P. Wang, M.J. Meziani, C.Y. Kong, A. Anderson, H. Maimaiti, G.E. LeCroy, H. Qian, Y.-P. Sun, Flexible Graphene–Graphene Composites of Superior Thermal and Electrical Transport Properties, ACS Appl. Mater. interfaces 6 (2014) 15026-15032.
[52] N.J. Song, C.M. Chen, C. Lu, Z. Liu, Q.Q. Kong, R. Cai, Thermally reduced graphene oxide films as flexible lateral heat spreaders, J. Mater. Chem. 2 (2014) 16563-16568.
[53] G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca‐Tasciuc, J. Lian, Large‐Area Freestanding Graphene Paper for Superior Thermal Management, Adv. Mater. 26 (2014) 4521-4526.
[54] C.T. Hsieh, C.E. Lee, Y.F. Chen, J.K. Chang, H.s. Teng, Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets, Nanoscale 7 (2015) 18663-18670.
[55] Y. Hwang, Enhancement of thermal and mechanical properties of flexible graphene oxide/carbon nanotube hybrid films though direct covalent bonding, J. Mater. Sci. 48 (2013) 7011-7021.
[56] D. Pandey, R. Reifenberger, R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602 (2008) 1607-1613.
[57] W. Fan, Y.Y. Xia, W.W. Tjiu, P.K. Pallathadka, C. He, T. Liu, Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications, J. Power Sources 243 (2013) 973-981.
[58] E.K. Goharshadi, S.J. Mahdizadeh, Thermal conductivity and heat transport properties of nitrogen-doped graphene, J. Mol. Graphics Modell. 62 (2015) 74-80.