簡易檢索 / 詳目顯示

研究生: 范瀞文
Fan, Jing-Wun
論文名稱: 多種奈米顆粒及有機小分子作為細胞基因轉植載體之研究
The research of Nanoparticles and organic small molecules as the cell gene transfected carriers
指導教授: 黃國柱
Hwang, Kuo-Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 115
中文關鍵詞: 基因轉植基因攜帶碳六十二氧化鈦流式細胞儀共軛聚焦顯微鏡
外文關鍵詞: gene transfection, DNA delivery, fullerene, Titaninm dioxide, flow cytometer, confocal microscopy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的,在研究多種奈米顆粒及有機小分子作為基因轉植載體對HeLa細胞基因轉植率的影響。第一章簡介文獻上基因治療各種方式及本實驗採用的HeLa cell及pAcGFP及藥物載體等介紹。第二章為儀器及實驗原理介紹,第三章為實驗藥品與儀器設備,第四章則進入實驗中使用到的有機小分子載體的合成過程,第五章E.coli 大量抽取質體步驟,第六、七章則為論文主軸所在,說明各部分實驗的實驗步驟及結果與討論,第八章為結論。
    本實驗結果顯示TiO2-20 nm、N doped Fe@CNP、ACh、Nicotine-(CH3)2、pAcGFP此五種藥物在各藥物濃度範圍時(2~500 μg/ml),細胞存活率皆大於80%;TiO2-300 nm亦有60-70%的細胞存活率,ND-pin、C60-N(CH3)2、Nicotine只有在最高濃度時(500 μg/ml),細胞存活率才會低於50%,在低濃度範圍,並不會對細胞的生長有太大的影響,而C60-bisadducts和lipofectamine對細胞的毒性較大。在基因轉植的實驗裡,C60-N(CH3)2、C60-bisadducts、ACh此三種藥物的基因轉植率較佳,分別為7.82%、10.38%、8.94%。而TiO2-20 nm在縮短餵藥後細胞再培養的時間後,基因轉植率也從原先的4.71%增加為17.66%;Nicotine- (CH3)2從原先的1.28%增加為7.80%。而從ICP-MS結果可知當餵藥的藥物濃度增加時,單顆細胞攝取藥物的量亦增加。


    第一章、簡介 基因治療(gene therapy)前言 1-1 基因治療所用之基因轉殖的方法 1-2 報導基因介紹 1-2.1 pAcGFP1-C1 Vector介紹 1-3 人類子宮頸癌細胞 (HeLa cell) 的介紹 1-4 藥物介紹及文獻探討 1-4.1 (1) C60 Mono- , Bis-fulleropyrrolidine 衍生物 1-4.2 (2)乙醯膽鹼 (ACh 1-4.3 (3)尼古丁 (Nicotine 1-4.4 (4)奈米顆粒TiO2-20 nm及TiO2-300 nm 1-4.5 (5) ND-pin (PMADQUAT-MND/ND) 1-4.6 (6) N doped Fe@CNP 第二章、儀器及實驗原理介紹 2-1雷射掃描共軛焦顯微鏡 (Laser Scanning Cofocal Microscopy 2-2 流式細胞儀(Flow cytometer) 2-3 分光光度計(spectrophotometer, RNA/DNA calculator 2-4 MTT細胞毒性測試 2-5 DNA 電泳 第三章、實驗藥品與儀器設備 3-1 化學合成實驗藥品 3-2 細胞培養 3-3 生物實驗藥品 3-4 DNA 放大抽取使用Kit 3-5 實驗設備 第四章、有機小分子官能基化合成步驟 4-1 C60 Mono- , Bis-fulleropyrrolidine 衍生物的合成 4-1.1 C60-N-methylpyrrolidine單取代官能基的合成 (C60-N(CH3)--27 4-1.2 C60-N-methylpyrrolidine 雙取代官能基的合成(C60-bisadducts) 4-1.3 甲基化C60 Mono- , Bis-fulleropyrrolidine衍生物的合成(C60-N(CH3)2 、C60-bisadducts 4-2 Nicotine 甲基化的合成(Nicotine-(CH3)2) 第五章、 E.coli 大量抽取質體步驟 5-1 溶液濃度配製與培養基製作 5-2 DNA 轉形作用 5-3 pAcGFP的質體培養 5-4 使用Kit 抽取pAcGFP 第六章、有機小分子及多種奈米顆粒作為基因載體的應用 實驗步驟 6-1 PBS稀釋與滅菌 6-2 培養液的配製 6-3 細胞解凍 6-4 細胞繼代與培養 6-5 細胞計數 6-6 MTT 藥物毒性測試 6-6.1 TiO2-20 nm, -300 nm、ND-pin、N doped Fe@CNP四種藥物的細胞毒性測試 6-6.2 C60、ACh、Lipofectamine、Nicotine、pAcGFP及其衍生物的細胞毒性測試 6-6.3 細胞標準曲線 6-7 以雷射掃描共軛焦顯微鏡(confocal optical Microscopy)觀察pGFP在細胞中表達情形 6-8 以流式細胞儀(flow cytometer)定量鑑定藥物攜帶pGFP在細胞中的基因表達量 6-8.1 探討不同細胞培養時間對TiO2-20 nm基因轉植率的影響 6-9 使用電泳測定藥物與DNA 結合能力(DNA binding assay 6-9.1 Agarose Gel之配法 6-9.2 DNA 電泳 6-10 使用分光光度計(RNA/DNA calculator)測定藥物與DNA 結合能力(DNA binding assay 6-11 使用以感應電漿耦合電漿質譜分析儀 (ICP-MS) 定量分析細胞攝取TiO2-20nm藥物量 第七章、結果與討論 7-1.1 C60-N-methylpyrrolidine單取代官能基的鑑定(C60-NCH3 7-1.2 C60-N-methylpyrrolidine 雙取代官能基的鑑定(C60-bisadducts) 7-1.3 甲基化C60 Mono- fulleropyrrolidine衍生物的鑑定(C60-N(CH3)2) 7-1.4 Nicotine甲基化的鑑定(Nicotine-(CH3)2) 7-2 MTT 藥物毒性測試 7-2.1 細胞標準曲線圖 7-2.2 TiO2-20 nm, 300 nm、ND-pin、N doped Fe@CNP四種藥物的細胞毒性測試 7-2.3 C60、ACh、Lipofectamine、Nicotine、pAcGFP及其衍生物的胞毒性測試 7-3 以雷射掃描共軛焦顯微鏡(confocal optical Microscopy)觀察pGFP在細胞中表達情形 7-4 以流式細胞儀(flow cytometer)定量鑑定藥物攜帶pGFP在細胞中的基因表達量 7-4.1 探討不同細胞培養時間對TiO2-20 nm基因轉植率的影響 7-5使用電泳測定藥物與DNA 結合能力(DNA binding assay) 7-6 使用分光光度計(RNA/DNA calculator)測定藥物與DNA 結合能力(DNA binding assay) 7-7 使用以感應電漿耦合電漿質譜分析儀 (ICP-MS) 定量分析細胞攝取TiO2-20nm藥物量 第八章 結論 參考文獻

    1. 科學發展2003年12月,372期,清華大學化工系胡育誠
    2. Gao X., Huang L., A novel cationicliposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 1991, 179, 280
    3. Anderson W.F., Human gene therapy. Science, 1992, 256, 808
    4. Ishikawa Y., Charles J. Homcy, High efficiency gene transfer into mammalian cells by a double transfection protocol. Nucleic Acids Res., 1992, 20, 4367
    5. Walter E., Moelling K., Pavlovic J., Hans P. Merkle, Microencapsulation of DNA using poly(DL-lactide-co-glycolide): stability issues and release characteristics. J. Contro. Rel., 1999, 61, 361
    6. KS Denis-Mize, M Dupuis, ML MacKichan, M Singh, Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Therapy, 2000, 7, 2105
    7. D. Oupický, . Ko ák, K. Ulbrich, M. A. Wolfert and L. W. Seymou, DNA delivery systems based on complexes of DNA with synthetic
    polycations and their copolymers. J. Contro. Rel., 2000, 65, 149
    8. Xu Y. , Francis C. Szoka Jr., Mechanism of DNA Release from Cationic Liposome/DNA Complexes Used in Cell Transfection. Biochemistry, 1996, 35, 5616
    9. Gershon H., Ghirlando R., Susan B. Guttman, Abraham Minsky, Mode of Formation and Structural Features of DNA-Cationic Liposome Complexes Used for Transfection Biochemistry , 1993, 32, 7143
    10. Felgner J.H., Kumar R., Sridhar C.N., Wheeler C.J., Enhanced Gene Delivery and Mechanism Studies with a Novel Series of Cationic Lipid Formulations J. Biol. Chem., 1994 , 269, 2550
    11. Kozak M., An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res., 1987, 15, 8125
    12. Gerdes H.H., Keather C., Green fluorescent protein: application in
    cell biology. FEBS letters, 1996, 389, 44
    13. Gorman C., DNA Cloning: A Practical Approach (IRL Press, Oxford, UK), 1985, 2, 143
    14. Gurskaya N. G. et. al., A colourless green fluorescent protein homolo- gue from the non-fluorescent hydromedusa Aequorea coerlrscens and its fluorescent mutants. Biochem. J., 2003, 373, 403
    15. Matz M. V., et al., Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol., 1999, 17, 969
    16. Mikhail V. Matz, Arkady F. Fradkov, Yulii A. Labas, Erratum: Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol., 1999 ,17, 1227
    17. Sharrer T., The Scientist, 2006, 22, 20
    18. Hayflick L., The limited in vitro lifetime of human diploid cell strains. Exp.Cell Res., 1965, 37, 614
    19. ATCC Web site (www.atcc.org).
    20. http://www.ibms.sinica.edu.tw/html/sup4/instrument/confocal/
    confo.htm
    21. http://www.olympusamerica.com/
    22. Orrmerod M. G.. Flow cytometry: A practical approach IRL press N.Y, 1990, pp. 1-28
    23. Mossman T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55
    24. 國立屏東科技大學。1998。生物技術基礎實驗。睿煜出版社,屏東,台灣,221頁。
    25. 張吟平,國立清華大學化學所碩士論文,磁性奈米鑽石之製備、表面快速改質及生醫應用之研究,2008
    26. 張耕輔,國立清華大學化學所碩士論文,高週波小型高溫爐製備奈米碳材研究及磁性奈米碳球之生物醫學應用,2008
    27. Michele M., Gianfranco S., Maurizio P., Addition of azomethine ylides to C60: synthesis,characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc., 1993 , 115, 9798
    28. Rebecca bullard-dillard, Kim E., Walter A., James M., Tissue Sites of Uptake of 14C-Labeled C60. Bioorganic Chemistry, 1996, 24, 376
    29. Marchesan S., Da Ros T., Prato M., Isolation and Characterization of Nine Tris-adducts of N-Methylfulleropyrrolidine Derivatives. J. Org. Chem., 2005, 70, 4706
    30. Alan M. Cassell, Walter A. Scrivens, James M. Tour, Assembly of DNA/Fullerene Hybrid Materials. Angew. Chem. Int. Ed., 1998, 37, 1528
    31. Klumpp C., Lacerda L., Chaloin O., Da Ros T., Kostarelos K., Prato M. Bianco A., Multifunctionalised cationic fullerene adducts for gene transfer: design, synthesis and DNA complexation. Chem. Commun., 2007, 3762
    32. Nakamura E., Isobe H., Tomita N., Sawamura M., Jinno S., Okayama H., Remote Enantioselection Transmitted by an Achiral Peptide Nucleic Acid Backbone. Angew. Chem., Int. Ed., 2000, 39, 4254.
    33. Wolfram D., Niclas H.J., 1,3-Dipolar Cycloaddition of Pyrazolidinium Ylides to C6o Fullerene. Tetrahedron Letters, 1995, 36, 2457
    34. Ravi S., Davide P., McCarthy D.,Chaloin O., Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors. J. Am. Chem. Soc., 2005, 127, 4388
    35. Isobe H., Nakanishi W., Tomita N., Gene Delivery by Aminofullerenes: Structural Requirements for Efficient Transfection. Chem. Asian. J., 2006, 1-2, 167
    36. Katalin S.-Rózsa, The pharmacology of molluscan neurons. Progress in Neurobiology., 1984, 23,79
    37. Gelperin A., Rhines L. D., Flores J., Tank D. W., Coherent network oscillations by olfactory interneurons: modulation by endogenous amines. J. Neurophys., 1993, 69, 1930
    38. Fischer S., Spiegelhalder B., Eisenbarth J., Preussmann R., Investiga- tions on the origin of tobacco-specific nitrosamines n mainstream smoke of cigarettes. Carcinogenesis, 1990, 11, 723
    39. Murphy, S.E. and Heiblum, R., Effect of nicotine and tobacco-
    specific nitrosamines on the metabolism of N'-nitrosonornicotine and 4- (methylnitrosamino)-1-(3pyridyl)-1-butanone by rat oral tissue Carcinogenesis, 1990, 11, 1663
    40. Yingyan G., Reiko K., Setsuko K., Visual Dysfunction in Workers Exposed to a Mixture of Organic Solvents. NeuroToxicology, 2003 , 24, 703
    41. 江蘇峰,國立台灣大學電機所碩士論文,二氧化鈦奈米粒子所造成人類細胞毒性與基因毒性之探討,2007
    42. 童永樑 ,工研院太陽光電科技中心,釕金屬染料在染料敏化太陽電池所扮演的關鍵性角色,工業材料雜誌255期
    43. 王政凱,國立交通大學應用化學研究所,氮化銦/二氧化鈦太陽能電池:利用硼酸和亞磷酸修飾二氧化鈦表面之效應,2008
    44. 高維鑫,大同大學生物工程研究所碩士論文,家用日光燈照射二氧化鈦塗膜的殺菌作用,2005
    45. Toyooka T., Amano T., Suzuki H., Ibuki Y., DNA can sediment TiO2 particles and decrease the uptake potential by mammalian cells. Sci. of Tot. Envir., 2009, 407, 2143
    46. I. P. Chang, K. C. Hwang, C.S. Chiang, Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. J. Am. Chem. Soc., 2008, 130, 15476
    47. S. J. Yu, M.W. Kang, H. C. Chang, Bright Fluorescent Nanodi- amonds: No Photobleaching and Low Cytotoxicity. J. Am. Chem. Soc., 2005, 127, 17604
    48. H. Huang, E. Pierstorff, E. Qsawa, D. Ho, Active Nanodiamond Hydrogels for Chemotherapeutic Delivery. Nano. lett., 2007, 7, 3305
    49. K. K. Liu, C. L. Cheng, C. C. Chang, J. I. Chao, Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology, 2007, 18, 325102
    50. 王庸晉,醫學細胞生物學,科學出版社,2002.
    51. Teresa M. F.-Duarte, Yannick R., Listorti A., Synthesis and electronic properties of fullerene derivatives substituted with ligophenylenevinylen- ferrocene conjugates. New J. Chem., 2008, 32, 54
    52. Itoh T., Mishiro M., Matsumoto K., Synthesis of fulleropyrrolidine
    -imidazolium salt hybrids and their solubility in various organic solvents. Tetrahedron, 2008, 64, 1823
    53. Da Ros T., Prato M., Additions of Azomethine Ylides to Fullerene C60 Assisted by a Removable Anchor. J. Org. Chem., 2000, 65, 4289
    54. Marchesan S., Da Ros T,, Spalluto G., Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 3615
    55. Pavel A. Troshin, Alexey B. Kornev, Alexander S. Peregudov, Benzyl
    -amine imines as versatile precursors to azomethine and nitrile ylides in the [2 + 3] cycloaddition reactions with [60]fullerene. Mendeleev Commun., 2007, 17, 116
    56. Prate M., Chan Li Q., Wudl F., Addition of Azides to C60: Synthesis of Azafulleroids. J. Am. Chem. Soc., 1993, 115, 1148
    57. Ruoff R. S.,Doris S. Tse, Malhotra R., Donald C. Lorents, Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 1993, 97, 3379
    58. Nishimura T., Tsuchiya ., Ohsawa S., Macromolecular Helicity Induc- tion on a Poly(phenylacetylene) with C2-Symmetric Chiral [60]Fullerene- Bisadducts. J. Am. Chem. Soc., 2004, 126, 11711
    59. http://www.scienceisart.com/A_DNA/UVspectrum_2.html
    60. Garrett & Grisham, Biochemistry, second edition, Ch12
    61. 組織工程特論及實驗,黃玲惠教授講義,第13/16頁
    62. Jeffrey I. S., Jerry F. W., The iodomethylation of nicotine. An unusual example of competitive nitrogen alkylation. J. Org. Chem., 1976, 41, 3824
    63. Florence F. W., Daniel L. C., Recent advances in the synthesis of nicotine and its derivatives. Tetrahedron, 2007, 63, 8065
    64. Arthur P. P., Synthetic Hypotensive Agents. I. Some Powerful New Autonomic Ganglionic Blocking Agents Derived from Nicotine. J. Am. Chem. Soc., 1954, 76, 2211
    65. Schifferli K., Jessee J., Ciccarone V., High-Efficiency Transfection of
    Human Dermal Keratinocytes. Focus, 1999, 21, 56
    66. Anderson H., Battista P., Gorfien S., Hartley J., LIPOFECTAMINE™ 2000 Reagent For Rapid, Efficient Transfection of Eukaryotic Cells. Focus, 1999, 21 ,54
    67. Clements B.A., IncaniV., Kucharski C., Lavasanifar A., Ritchie B., Uludag H., A comparative evaluation of poly-l-lysine-palmitic acid and Lipofectamine ™ 2000 for plasmid delivery to bone marrow stromal cells. Biomaterials, 2007, 28 , 4693
    68. 江蘇峰,台灣大學電機工程學研究所研究所碩士論文,二氧化鈦奈米粒子所造成人類細胞毒性與基因毒性之探討,2007
    69. Rahman Q., Lohani M., Dopp E., Evidence that ultrafine titanium dioxideinduces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health, 2002, 110, 797
    70. Ken D., Vicki S., Current hypotheses on the mechanisms of toxicity
    of ultrafine particles. Ann Ist Super Sanità, 2003, 39, 405
    71. Li S., Huang L., Lipidic Supramolecular Assemblies for Gene Transfer. J. Lipos. Res., 1996, 6, 589
    72. 洪智煌助理教授,基因治療的研發現況,慈濟大學臨床醫學研究所,2008
    73. Verma A. et al., Surfacestructureregulated cellmembrane penetration by monolayerprotected nanoparticles. Nature Mater., 2008, 7, 588
    74. Arscott P. G., An-Zhi L., Bloomfield V. A., Condensation of DNA by trivalent cations. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers, 1990, 30, 619
    75. Wilson R.W., Bloomfield V. A., Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry, 1979, 18, 2192
    76. http://www.invitrogen.com/site/us/en/home.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE