研究生: |
李翼丞 Lee, Yi-Cheng |
---|---|
論文名稱: |
具表面微結構與背面局部接觸結構之多晶矽太陽能電池研究 Study of Multicrystalline Silicon Solar Cells with Microstructured Surface and Rear Local Contact |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
陳昇暉
Chen, Sheng-Hui 余沛慈 Yu, Pei-Chen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 微結構 、多晶矽 、太陽能電池 、濕式氧化 |
外文關鍵詞: | microstructure, multicrystalline, solar cell, wet oxidation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由酸蝕刻將P型多晶矽晶片表面形成微結構並降低其反射率,探討了其最佳抗反射層之厚度。之後以濕式氧化生長的氧化鋁薄膜形成PERC架構進行電池製作。找出125nm厚的氮化矽做為抗反射層可以比一般商業片的平均反射率還要低0.3%,也得出若背部有微結構,則可能會影響到氧化鋁之鈍化效果,使其少數載子生命週期上升幅度極小以及電池FF表現不佳;而經過KOH去除背部微結構後再進行氧化鋁薄膜的產生,可使鈍化層確實產生鈍化效果,將少數載子生命週期提升,之後製作之電池也有較佳之表現。
In this experiment, the microstructure of the P-type polycrystalline silicon wafer was formed by acidic etching and the reflectivity was reduced, and the thickness of the antireflection layer was optimized. We used wet oxidation for growing an aluminum oxide film to form a PERC structure in solar cell fabrication. We found a best 125 nm thickness for the silicon nitride antireflection layer, which has a 0.3% lower average reflectance compared with the commercial wafer. It was also found that if the back side of the wafer has microstructure, it may affect the passivation effect of the aluminum oxide. The minority carrier lifetime would increase very little for the silicon wafer with microstructure on the back side and the resultant cell performance were degraded. However after using KOH solution to remove the backside microstructure, we found that the passivation layer of aluminum oxide rendered an increase in the minority carrier lifetime, and the cell performance could be improved.
參考文獻
[1] https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=2806
[2] Wolfgang Palz, Power for the World - The Emergence of Electricity from the Sun. Pan Stanford Publishing. p6, 2010.
[3] R. Williams, "Becquerel photovoltaic effect in binar compounds," The Journal of Chemical Physics, vol.32, pp 1505–1514, 1960.
[4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Applied Physics, vol.8, p.676, 1954.
[5] https://www.nrel.gov/pv/assets/images/efficiency-chart.png
[6] S. Gatz, H. Hannebauer, R. Hesse, F. Werner, A. Schmidt, T. Dullweber, J. Schmidt, K. Bothe, and R. Brendel1, “19.4%-efficient large-area fully screen-printed silicon solar cells,” Physica Status Solidi, vol. 5, pp. 147– 149, 2011.
[7] Jan Schmidt, Mark Kerr, and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapor-deposited SiN films and thin thermal SiO2/plasma SiN stacks,” Semiconductor Science and Technology, vol. 16, pp.164-170, 2001.
[8] I. Martín, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla, “Surface passivation of pp-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films,” Applied Physics Letters, vol. 79, pp. 2199-2201, 2001.
[9] Marc Hofmann, Stephan Kambor, Christian Schmidt, Dieter Grambole, Jochen Rentsch, Stefan Glunz, and Ralf Preu, “Firing Stable Surface Passivation Using All-PECVD Stacks of SiOx-H and SiNx-H,” 22nd European Photovoltaic Solar Energy Conference and Exhibition, 3-7 September 2007.
[10] T. Makoto, T. Mikio, M. Takao, S. Toru, T. Shinya, N. Shoichi, H. Hiroshi, and K. Yukinori, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer),” Japanese Journal of Applied Physics, vol. 31, pp. 3518-3522, 1992.
[11] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in photovoltaics: research and applications, vol.16, pp. 461–466, 2008.
[12] H Jansen, M de Boer, R Legtenberg, and M Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” Journal of Micromechanics and Microengineering, vol. 5, 1995.
[13] Hele Savin, Päivikki Repo, Guillaume von Gastrow, Pablo Ortega, Eric Calle, Moises Garín, and Ramon Alcubilla, “Black silicon solar cells with interdigitatedback-contacts achieve 22.1% efficiency,” Nature Nanotechnology, vol.10, pp.624–628, 2015.
[14] 曹天相 , “背面具有鈍化層與局部接觸結構之創新型矽晶太陽能電池製作: 初步研究, ” 國立清華大學光電工程研究所碩士論文, 2015.
[15] https://www.ezphysics.nchu.edu.tw
[16] D.A. Neamen, Semiconductor Physics and devices: Basic Principles, 2012.
[17] C. Riordan, and R.Hulstrom, “What is an air mass 1.5 spectrum?,” IEEE Photovoltaic Specialists Conference, 1990.
[18] https://climatesanity.files.wordpress.com/2011/04/spectrum-overlay-2.png
[19] W.P. Mulligan, D.H. Rose, M.J. Cudzinovic, D.M.d. Ceuster, K.R. McIntosh, D.D. Smith, and R.M. Swanson,” Manufacture of solar cells with 21% efficiency,” in Proceedings of the 19th EU PVSEC, 2004.
[20] Stuart D.McDonald, Kazuhiro Nogita, and Arne K Dahle, “Eutectic nucleation in Al–Si alloys,” Acta Materialia, vol.52, pp.4273–4280, 2004.
[21] Konrad Mertens, Photovoltaik - Lehrbuch zu Grundlagen, Technologie und Praxis, 2011.
[22] C.H. Seager, and D.S. Ginley, “Passivation of grain boundaries in polycrystalline silicon,” Applied Physics Letters, vol. 34, pp.337-340, 1979.
[23] 陳柏宏, “濕式氧化法形成Al2O3鈍化層之背面具局部接觸結構矽晶太陽能電池研究, ” 國立清華大學光電工程研究所碩士論文, 2016.
[24] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert, and R. Brendel, “Contact formation and recombination at screen-printed local aluminum-alloy silicon solar cell base contacts , ”IEEE Transactions on Electron Device, pp. 3239-3245, 2011.