簡易檢索 / 詳目顯示

研究生: 曹修豪
Tsao, Hsiu-Hao
論文名稱: 電漿子式光學天線之設計與實驗驗證
Design and Experimental Verifications of Plasmonic Optical Antennas
指導教授: 黃承彬
Huang, Chen-Bin
口試委員: 黃承彬
李佳翰
林鶴南
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 93
中文關鍵詞: 奈米天線表面電漿子近場掃描光學顯微術電子束微影術有限差分時域法
外文關鍵詞: antenna, surface plasmons, near-field scanning optical microscopy, electron beam lithography, finite-difference time domain method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用有限差分時域法模擬三角形對天線的光譜響應與近場能量分佈,得到在波長 和 的激發下,高 的三角形對天線之增強因子將會大於高 的三角形對天線,且在近場分佈圖中,電場能量會聚集於三角形粒子與空氣接觸的頂端,其強度會隨著距離衰減,衰減程度約正比於距離的六次方倒數。考慮入射光之偏振態,電場偏振方向平行天線走向所得到的增強因子將會大於垂直天線走向。
    樣品製程方面,本論文利用電子束微影術,於加速電壓 和電流 的條件下,設計並在石英基板上製作出奈米天線陣列;而量測方面,以自行架設的收集式近場掃描光學顯微鏡,配合衰減式全反射光路,利用剪切力回饋的方式量測奈米天線陣列之真實近場光學強度分佈。最後將實驗量測數據與模擬數據做一比較,無論是定性或定量分析皆有非常相近的結果。


    In this work, we use finite-difference time domain method to simulate the spectral response and near-field intensity distribution of bowtie antenna and found that under the excitation of and , the enhanced factor of antenna with the height of is larger than the antenna with the height of . When studying the near-field intensity distribution, the electric energy will concentrate on the apex of bowtie antenna in the metal-air side and its magnitude will decay with increasing observation distance. The decay rate is proportional to the reciprocal of six power of distance. Considering the polarization of incident light, when polarization is parallel to antenna axis, the enhancement will be larger than the polarization perpendicular to antenna axis.
    In the aspect of sample process, we utilize the electron beam lithography to design and fabricate nano-antenna array on quartz substrate under the condition of and . Then, in the aspect of measurement, we use home-made collection mode near-field scanning optical microscope with attenuated total internal reflection set-up to obtain the real near-field intensity distribution of bowtie antenna array by shear force feedback. Finally, we compare the experimental results with the simulation data, and have a very close conclusion.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第1章 序言 1 第2章 有限差分時域法(FDTD)之介紹—以MEEP為例 5 2.1 馬克士威方程組的介紹與Yee演算法 6 2.1.1 有限差分時域法下三維空間的馬克士威方程組 6 2.1.2 Yee演算法 9 2.1.3 三維空間中馬克士威方程組的有限差分表示式 14 2.1.4 有限差分時域法的無散度性質 21 第3章 光學天線的簡介與模擬 24 3.1 金屬於光頻率下的行為 25 3.2 光學天線的理論模型 30 3.3 光學天線的模擬 35 第4章 樣品製程與實驗量測 56 4.1 電子束微影術(EBL)的簡介與製程步驟 57 4.2 近場掃描光學顯微鏡的原理與架構 66 4.3 奈米天線的實驗量測與分析 72 第5章 結論與未來展望 76 參考文獻 77 附錄 83

    1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
    2. U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review 50, 573-573 (1936).
    3. U. Fano, "On the anomalous diffraction gratings II," Physical Review 51, 288-288 (1937).
    4. U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik 32, 393-443 (1938).
    5. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America 31, 213-222 (1941).
    6. R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Physical Review 106, 874-881 (1957).
    7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
    8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    9. H. A. Atwater, "The promise of plasmonics," (2007), pp. 56-63.
    10. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters 81, 1714-1716 (2002).
    11. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Physical Review B 67 (2003).
    12. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Applied Physics Letters 86, 3 (2005).
    13. C. Girard, and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Optics Express 12, 6141-6146 (2004).
    14. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757-760 (2008).
    15. T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, "Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses," Physical Review Letters 103 (2009).
    16. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
    17. P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. G. de Abajo, W. Pfeiffer, and T. Brixner, "Analytic coherent control of plasmon propagation in nanostructures," Optics Express 17, 14235-14259 (2009).
    18. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Struber, and D. V. Voronine, "Spatiotemporal control of nanooptical excitations," Proceedings of the National Academy of Sciences of the United States of America 107, 5329-5333 (2010).
    19. X. T. Li, and M. I. Stockman, "Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal," Physical Review B 77 (2008).
    20. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Physical Review Letters 88 (2002).
    21. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherently controlled femtosecond energy localization on nanoscale," Applied Physics B-Lasers and Optics 74, S63-S67 (2002).
    22. M. Liu, T. Zentgraf, Y. M. Liu, G. Bartal, and X. Zhang, "Light-driven nanoscale plasmonic motors," Nature Nanotechnology 5, 570-573 (2010).
    23. H. Ukita, and H. Kawashima, "Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position," Applied Optics 49, 1991-1996 (2010).
    24. P.-N. Li, H.-H. Tsao, J.-S. Huang, and C.-B. Huang, "Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis," Opt. Lett. 36, 2339-2341 (2011).
    25. P. Bharadwaj, B. Deutsch, and L. Novotny, "Optical Antennas," Adv. Opt. Photon. 1, 438-483 (2009).
    26. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, "Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles," Journal of Applied Physics 108, 6 (2010).
    27. J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, "Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits," Physical Review B 79, 5 (2009).
    28. M. Lester, and D. C. Skigin, "An optical nanoantenna made of plasmonic chain resonators," Journal of Optics 13 (2011).
    29. L. Novotny, "Effective wavelength scaling for optical antennas," Physical Review Letters 98, 4 (2007).
    30. L. Novotny, and N. van Hulst, "Antennas for light," Nature Photonics 5, 83-90 (2011).
    31. M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H. J. Eisler, "Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties," Nanotechnology 20 (2009).
    32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications 181, 687-702 (2010).
    33. K. S. Yee, "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," Ieee Transactions on Antennas and Propagation AP14, 302-& (1966).
    34. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," Journal of Computational Physics 114, 185-200 (1994).
    35. J. P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," Ieee Transactions on Antennas and Propagation 44, 110-117 (1996).
    36. J. P. Berenger, "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics 127, 363-379 (1996).
    37. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2005).
    38. 蘇于倫, "表面電漿增進奈米狹縫之光穿透效率," in 光電科學與工程研究所(國立成功大學, 台南市, 2007), p. 63.
    39. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Optics Letters 31, 2972-2974 (2006).
    40. A. F. Oskooi, C. Kottke, and S. G. Johnson, "Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing," Optics Letters 34, 2778-2780 (2009).
    41. T. Kashiwa, and I. Fukai, "A treatment by the fd-td method of the dispersive characteristics associated with electronic polarization," Microwave and Optical Technology Letters 3, 203-205 (1990).
    42. J. D. Jackson, Classical electrodynamics (Wiley, 1999).
    43. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
    44. 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊 28, 472-485 (2006).
    45. 吳民權、劉威志, "表面電漿子理論與模擬," 物理雙月刊 28, 486-496 (2006).
    46. L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).
    47. P. B. Johnson, and R. W. Christy, "Optical-constants of noble-metals," Physical Review B 6, 4370-4379 (1972).
    48. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37, 5271-5283 (1998).
    49. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).
    50. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews 4, 795-808 (2010).
    51. A. Boltasseva, and H. A. Atwater, "Low-Loss Plasmonic Metamaterials," Science 331, 290-291 (2011).
    52. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
    53. P. Biagioni, J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation."
    54. R. L. Chern, X. X. Liu, and C. C. Chang, "Particle plasmons of metal nanospheres: Application of multiple scattering approach," Physical Review E 76, 9 (2007).
    55. B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics (Wiley-Interscience, 2007).
    56. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications 220, 137-141 (2003).
    57. L. Novotny, "Strong coupling, energy splitting, and level crossings: A classical perspective," American Journal of Physics 78, 1199-1202 (2010).
    58. J. S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode Imaging and Selection in Strongly Coupled Nanoantennas," Nano Letters 10, 2105-2110 (2010).
    59. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    60. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridizaton in nanoparticle dimers," Nano Letters 4, 899-903 (2004).
    61. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Physical Review Letters 94, 017402 (2005).
    62. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible," Nano Letters 4, 957-961 (2004).
    63. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007).
    64. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Physical Review Letters 95, 017402 (2005).
    65. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat Photon 3, 654-657 (2009).
    66. D. P. Fromm, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
    67. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, "Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection," Nat Mater 9, 60-67 (2010).
    68. E. Hecht, Optics (Addison-Wesley, 2002).
    69. "中央研究院奈米核心設施," http://www.phys.sinica.edu.tw/~nanofacilities/ELS-7000.htm.
    70. "intro to e-beam lithography," http://henderson.chbe.gatech.edu/Introductions/intro%20to%20e-beam%20lithography.htm.
    71. P. Rai-Choudhury, Handbook of microlithography, micromachining, and microfabrication (SPIE Optical Engineering Press, 1997).
    72. S. A. Campbell, The science and engineering of microelectronic fabrication (Oxford University Press, 2001).
    73. L. F. Thompson, C. G. Willson, and M. J. Bowden, Introduction to microlithography (American Chemical Society, 1994).
    74. Archiv für mikroskopische Anatomie (F. Cohen, 1873).
    75. L. Rayleigh, "LVI. Investigations in optics, with special reference to the spectroscope," Philosophical Magazine Series 5 8, 477-486 (1879).
    76. Rayleigh, "XXXI. Investigations in optics, with special reference to the spectroscope," Philosophical Magazine Series 5 8, 261-274 (1879).
    77. L. Rayleigh, "V. Investigations in optics, with special reference to the spectroscope," Philosophical Magazine Series 5 9, 40-55 (1880).
    78. "The Rayleigh Criterion," http://hyperphysics.phy-astr.gsu.edu/Hbase/phyopt/raylei.html.
    79. E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philosophical Magazine 6, 356-362 (1928).
    80. J. A. Okeefe, "Resolving power of visible light," Journal of the Optical Society of America 46, 359-359 (1956).
    81. E. A. Ash, and G. Nicholls, "Super-resolution aperture scanning microscope," Nature 237, 510-& (1972).
    82. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, "Tunneling through a controllable vacuum gap," Applied Physics Letters 40, 178-180 (1982).
    83. G. A. Massey, "Microscopy and pattern generation with scanned evanescent waves," Applied Optics 23, 658-660 (1984).
    84. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy - image recording with resolution lambda/20," Applied Physics Letters 44, 651-653 (1984).
    85. D. Courjon, K. Sarayeddine, and M. Spajer, "Scanning tunneling optical microscopy," Optics Communications 71, 23-28 (1989).
    86. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, and T. L. Ferrell, "Photon scanning tunneling microscopy," Review of Scientific Instruments 61, 3669-3677 (1990).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE