簡易檢索 / 詳目顯示

研究生: 朱翊禎
Ju, Yi-Jen
論文名稱: 深共熔離子液體與有機電解質於電雙層電容器與染料敏化太陽能電池之應用
The Application of Deep Eutectic Solvents and Organic Electrolytes for EDLCs and DSSCs
指導教授: 胡啟章
Hu, Chi-Chang
口試委員: 胡啟章
Hu, Chi-Chang
李玉郎
汪上曉
衛子健
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 165
中文關鍵詞: 深共熔離子液體染料敏化太陽能電池電容器
外文關鍵詞: Deep eutectic solvent, DSSC, EDLC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究利用深共熔離子液體與有機電解質於電雙層電容與染料敏化太陽能電池之應用。研究首先利用深共熔離子液體G.CC、M.CC和U.CC應用在電容器上並探討其行為,發現電容特性以G.CC為最佳,進一步添加輔助電解質過氯酸鋰 (LiClO4) 與低黏度的有機溶劑γ-丁酸內酯(GBL) 來改善離子液體之高黏度造成高掃描速率下之電阻特性。在添加過氯酸鋰於離子液體後發現反而造成電化學行為變差,此可經由測量導電度、黏度的結果來進一步確認。變差的原因可能為Li+ 會和甘油 (glycerol, G)、順丁烯二酸 (malonic acid, M) 或尿素(urea, U) 這類的氫鍵提供者 (Hydrogen bond donor, HBD) 形成鍵結減弱深共熔離子液體中之氫鍵而致。以G.CC來添加不同量之GBL的結果增加了氯化膽鹼 (Choline chloride, CC) 離子的移動性,有助於電化學可逆性與電容維持率的提升。由於γ-丁酸內酯之低黏度特性十分適合用於電容器上,其後並將之與其他溶劑如PC、EG等互相混合來探討成分的不同在電雙層電容器有無顯著的差異。最後改變第三章中G.CC之配位基為G.BCI來應用在染料敏化太陽能電池中,測試I3- 之擴散與黏度之關係與機制。由結果發現溶劑黏度的改善雖有助於I3- 之擴散,但離子濃度的降低但卻會造成I-/I3- 之過電位與電荷轉移阻抗的增加。另外掃描速度的改變會影響反應速率,而致使I3- 擴散至電極表面反應量的不同而造成了薄層擴散(thin-layer voltammetry) 與半無窮遠擴散 (semi-infinite diffusion) 兩種擴散機制。在組裝成全電池後亦發現擴散速率的提升有助於增加電池之光電效率。


    目錄 摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 xiii 表目錄 xxii 第一章 緒論 1 1-1電化學原理 1 1-1-1 電化學反應系統 1 1-1-2影響電化學系統之因素 2 1-2電極材料 4 1-3電化學電容器 6 1-3-1電化學電容器的分類 7 1-3-2電化學電容器的量測 11 1-3-3影響電化學電容器特性的因素 16 1-4染料敏化太陽能電池 (DSSC) 20 1-4-1染料敏化太陽能電池之工作原理 20 1-4-2染料敏化太陽能電池之光電轉換效率簡介 22 1-5離子液體於超級電容器的應用 22 1-6 離子液體於染料敏化太陽能電池之應用 26 1-6-1 I-/I3-之反應機制 27 1-6-2 不含碘之固態電解質於染料敏化太陽能電池之應用 29 1-7有機電解質於電雙層電容器之應用 30 1-7-1電解質離子大小與碳材料對電容器之應用 32 1-8深共熔離子液體 33 1-8-1深共熔離子液體之介紹 33 1-8-2深共融離子液體於超級電容器及其他方面之應用 35 1-9研究動機與本文大綱 37 第二章 實驗方法、步驟與儀器簡介 39 2-1儀器與藥品 39 2-1-1 儀器 39 2-1-2 藥品 40 2-2 石墨基材的製備與前處理 41 2-3活性碳電極、CNT電極及Carbon Aerogel電極的製備 42 2-3-1 活性碳電極的製備 42 2-3-2 CNT、Carbon Aerogel電極的製備 42 2-4電化學分析實驗 43 2-4-1 循環伏安實驗 (Cyclic Voltammetry, CV) 45 2-4-2 極限電流測試 (Limiting current) 45 2-4-3充放電實驗 (Chronopotential, CP) 46 2-4-4電位窗測試 (Potential window) 46 2-4-5阻抗頻譜分析 47 2-4-5-1阻抗頻譜分析原理 47 2-4-5-2電化學阻抗頻譜理論 50 2-4-5-3 等效電路與電化學系統模擬 52 2-4-5-4常見電路元件之電化學物理意義 56 2-4-5-5阻抗頻譜分析實驗方法 59 2-5 材料分析儀器及原理簡介 60 2-5-1霍氏紅外線光譜儀分析 (Fourier-transform Infrared Spectroscopy, FT-IR) 60 2-5-2氮氣吸附脫附分析 63 2-6染料敏化太陽能電池效率量測分析 64 第三章 深共熔離子液體於電雙層電容器之應用 66 3-1深共熔離子液體之配置 66 3-2 實驗方法 67 3-3 實驗結果與討論 70 3-3-1 深共熔離子液體之特性與電化學分析 70 3-3-1-1不同溫度下深共熔離子液體之循環伏安行為 70 3-3-2加輔助電解質於深共熔離子液體之特性與電化學分析 74 3-3-2-1加入輔助電解質之循環伏安行為 74 3-3-2-2加入輔助電解質之導電度分析 79 3-3-2-3加入輔助電解質於深共熔離子液體之黏度效應 81 3-3-3加有機溶劑於深共熔離子溶液之影響與電化學分析 83 3-3-3-1加入有機溶劑之循環伏安行為 83 3-3-3-2不同比例之有機溶劑之循環伏安分析 85 3-3-3-3不同比例之有機溶劑之導電度分析 89 3-3-4不同碳材對深共熔離子溶液之材料與電化學分析 95 3-3-5總結 99 第四章 有機電解質於電雙層電容器之應用 101 4-1實驗方法 101 4-2實驗結果與討論 102 4-2-1不同有機溶劑添加過氯酸鋰之電化學分析 102 4-2-2不同混合有機溶劑之電化學分析 105 4-2-3不同比例之GBL/PC溶劑之材料與電化學分析 110 4-2-3-1不同比例溶劑之循環伏安分析 110 4-2-3-2不同比例溶劑之電極表面利用率分析 113 4-2-4不同碳材對電解質之材料與電化學分析 115 4-2-4-1不同碳材之循環伏安分析 115 4-2-4-2不同碳材之內外表面積利用率分析 119 4-2-5總結 122 第五章 深共熔離子液體於染料敏化太陽能電池之應用 124 5-1深共熔離子液體之配置 124 5-2實驗結果與討論 125 5-2-1以G.BCI為鉑對電極之電解質分析 125 5-2-1-1不同比例之G.BCI/PEGDME之黏度與導電度分析 125 5-2-1-2不同PEGDME溶劑比例之兩極式與三極式循環伏安分析 126 5-2-1-3不同PEGDME溶劑比例之兩極式與三極式交流阻抗頻譜分析 129 5-2-1-4不同浸鍍白金秒數之特性與電化學分析 134 5-2-1-4-1不同浸鍍秒數之表面分析 134 5-2-1-4-2不同浸鍍秒數之白金吸附行為分析 136 5-2-1-4-3不同浸鍍秒數之三極式系統電化學分析 138 5-2-2不同變數對鉑對電極之電化學分析 140 5-2-2-1不同掃描速率之電化學分析 140 5-2-2-2不同墊片厚度之電化學分析 143 5-2-3不同黏度電解質對染料敏化太陽能電池之電化學分析 146 5-2-3-1不同黏度電解質之I-V測試 146 5-2-3-2不同黏度電解質之交流阻抗頻譜分析 149 5-2-4總結 152 第六章 總結與未來展望 154 6-1總結 154 6-2未來展望 156 參考文獻 158 圖目錄 Fig. 1-1 A comparison of the power and energy density characteristics of capacitors, supercapacitors, batteries and fuel cells. [7] 7 Fig. 1-2 Schematic model of double-layer capacitor. 8 Fig. 1-3 Potential step experiment for RC circuit. 14 Fig. 1-4 Current step experiment for RC circuit. 14 Fig. 1-5 E-t behavior resulting from current step experiment. 15 Fig. 1-6 E-t plots from a cyclic linear potential sweep applied to an RC circuit. 15 Fig. 1-7 i-E plots from a cyclic linear potential sweep applied to an RC circuit. 16 Fig. 1-8 Working scheme of DSSCs. 20 Fig. 1-9 Working principle scheme of DSSCs. 21 Fig. 1-10 The illustration of the ion transport mechanism across the boundary layer near the carbon electrode surface for the GE and LE capacitor cells[49]. 32 Fig. 1-11 The illustration of forming hydrogen bond in DESs. 34 Fig. 1-12 Freezing point of choline chloride/urea mixtures as a function of composition[55]. 35 Fig. 2-4.1 Electrochemical experiment apparatus. 44 Fig. 2-4-5-1.1 Flow diagram for measurement and characterization. 49 Fig. 2-4-5-2.1 Phase diagram shows the relationship between alternating current and voltage at frequency ω. 51 Fig. 2-4-5-3.1 Equivalent circuit of an electrochemical cell. 55 Fig. 2-4-5-3.2 Nyquist plot. 55 Fig. 2-4-5-5.1 Schematic of an AC measurement. 59 Fig. 2-5-1.1 Molecular vibrational model. 60 Fig. 2-5-1.2 Structured chart of interferometer.[68] 63 Fig. 3-2.1 Cyclic voltammograms of (a) G.CC, M.CC, and U.CC, (b) 0.5M LiClO4/G.CC, 0.5M LiClO4/M.CC, and 0.5M LiClO4/U.CC, (c) 1 M LiClO4/ (G.CC/GBL (= 4)), 1 M LiClO4/ (G.CC/GBL (= 3)), and 1 M LiClO4/ (G.CC/GBL (= 2)), (d) G.CC/GBL (= 4), G.CC/GBL (= 3), and G.CC/GBL (= 2) for potential window tests using graphite carbon at a scan rate of 1mV/s. 68 Fig. 3-3-1-1.1 Cyclic voltammograms of (a) G.CC at 1mV/s, 5mV/s, and 10mV/s, (b) M.CC at 1mV/s, and (c) U.CC at 1mV/s at room temperature. 72 Fig. 3-3-1-1.2 Cyclic voltammograms of (a) G.CC at RT, 50℃, 75℃, and 100℃, (b) M.CC at RT, 50℃, 75℃, and 100℃, and (c) U.CC at RT, 75℃, and 100℃ at 1mV/s. 73 Fig. 3-3-2-1.1 Cyclic voltammograms of (a) 0.5M LiClO4/G.CC at RT, and 50℃, (b) 0.5M LiClO4/M.CC at RT, and 50℃, and (c) 0.5M LiClO4/U.CC at RT, and 75℃at 1mV/s. 77 Fig. 3-3-2-1.2 Cyclic voltammograms of (a) G.CC and 0.5M LiClO4/G.CC (b) M.CC and 0.5M LiClO4/M.CC, and (c) U.CC and 0.5M LiClO4/U.CC at 75℃and the scan rate of 1mV/s. 78 Fig. 3-3-2-2.1 Arrhenius plot of log specific conductivity vs. reciprocal of temperature for G.CC, 0.5M LiClO4/G.CC, M.CC, 0.5M LiClO4/M.CC, U.CC, and 0.5M LiClO4/U.CC. 80 Fig. 3-3-3-1.1 Cyclic voltammograms of (a) G.CC and 1 M LiClO4 (G.CC/GBL (= 4)), (b) M.CC and 1 M LiClO4/ (M.CC/GBL (= 4)), and (c) U.CC and 1 M LiClO4/ (U.CC/GBL (= 4)) at the scan rate of 1mV/s. 84 Fig. 3-3-3-2.1 Cyclic voltammograms of G.CC, 1 M LiClO4/(G.CC/GBL (= 4)), 1 M LiClO4/(G.CC/GBL (= 3)), and 1 M LiClO4/(G.CC/GBL (= 2)) at (a) 1mV/s and RT, and (b) 5mV/s and 50℃. 86 Fig. 3-3-3-2.2 Capacitance retention of G.CC, 1 M LiClO4/(G.CC/GBL (= 4)), 1 M LiClO4/(G.CC/GBL (= 3)), and 1 M LiClO4/(G.CC/GBL (= 2)) at different scan rate. 86 Fig. 3-3-3-2.3 Cyclic voltammograms of G.CC/GBL (= 2), and 1 M LiClO4/(G.CC/GBL (= 2)) at (a) 5mV/s and RT, and (b) 5mV/s and 50℃. 88 Fig. 3-3-3-2.4 Capacitance retention of 1 M LiClO4/(G.CC/GBL (= 2)) and G.CC/GBL (= 2) at different scan rate. 88 Fig. 3-3-3-3.1 Arrhenius plot of log specific conductivity vs. reciprocal of temperature for G.CC, 1 M LiClO4/(G.CC/GBL (= 4)), 1 M LiClO4/(G.CC/GBL (= 3)), 1 M LiClO4/(G.CC/GBL (= 2)), G.CC/GBL (= 4)), G.CC/GBL (= 3)), and G.CC/GBL (= 2)). 91 Fig. 3-3-4.1 BET isotherm and pore size distribution of active carbon fiber. 96 Fig. 3-3-4.2 BET isotherm and pore size distribution of CNT annealing at 900℃. 97 Fig. 3-3-4.3 Cyclic voltammograms of G.CC/GBL (= 2) using active carbon fiber electrode at different scan rate and room temperature. 97 Fig. 3-3-4.4 Cyclic voltammograms of G.CC/GBL (= 2) using carbon nanotube electrode at different scan rate and room temperature. 98 Fig. 4-2-1.1 Cyclic voltammograms of (a) 1M LiClO4/PC, (b) 1M LiClO4/EG, and (c) 1M LiClO4/GBL at the scan rate of 1mV/s, 5mV/s, and 10mV/s. 103 Fig. 4-2-1.2 Capacitance retention of 1M LiClO4/PC, 1M LiClO4/EG, and 1M LiClO4/GBL at different scan rate. 104 Fig. 4-2-2.1 Cyclic voltammograms of (a) 1M LiClO4/GBL,PC (=1), (b) 1M LiClO4/GBL,EG (=1), and (c) 1M LiClO4/PC,EG (=1) at the scan rate of 1mV/s, 5mV/s, and 10mV/s. 108 Fig. 4-2-2.2 Charge and discharge curves of (a) 1M LiClO4/GBL,PC (=1), (b) 1M LiClO4/GBL,EG (=1), and (c) 1M LiClO4/PC,EG (=1) at 1.5mA/cm2 and 5mV/cm2. 109 Fig. 4-2-2.3 Capacitance retention of 1M LiClO4/GBL,PC ( =1), 1M LiClO4/GBL,EG ( =1), and 1M LiClO4/PC,EG ( =1) at room temperature. 110 Fig. 4-2-3-1.1 Cyclic voltammograms of 1M LiClO4/GBL, 1M LiClO4/ GBL,PC ( =2), 1M LiClO4/ GBL,PC ( =1), 1M LiClO4/ PC,GBL ( =2), 1M LiClO4/ PC at (a) 1mV/s and (b) 5mV/s and at room temperature. 112 Fig. 4-2-3-1.2 Specific capacitance of different volume ratio of GBL/PC. 113 Fig. 4-2-4-1.1 Cyclic voltammograms of 1M LiClO4/ GBL,PC ( =2) by using (a) CNT electrode annealing at 900 oC, (b) ACF electrode, and (c) carbon aerogel electrode at different scan rate and room temperature. 116 Fig. 4-2-4-1.2 BET isotherm and pore size distribution of (a) CNT annealing at 900 oC, (b) ACF, and (c) carbon aerogel. 117 Fig. 4-2-4-1.3 Capacitance retention of 1M LiClO4/GBL,PC ( =2) by using (a) CNT electrode annealing at 900 oC, (b) ACF electrode, and (c) Carbon aerogel electrode at room temperature. 118 Fig. 4-2-4-2.1 Dependence of (a) q* on v-1/2 and (b) 1/q* on v1/2 for (1) CNT electrode annealing at 900 oC, (2) ACF electrode, and (3) Carbon aerogel electrode at room temperature. 121 Fig. 5-2-1-1.1 Specific conductivity and viscosity of different weight percent of PEGDME with G.BCI. 125 Fig.5-2-1-2.1 Cyclic voltammograms of G.BCI with 30wt%PEGDME, 50wt%PEGDME, and 70wt%PEGDME for (a) two-electrodes test and (b) three-electrodes test at the scan rate of 10mV/s 128 Fig. 5-2-1-3.1 Nyquist plots of G.BCI with 30wt%PEGDME, 50wt%PEGDME, and 70wt%PEGDME for (a) two-electrodes test and (b) three-electrodes test. 130 Fig. 5-2-1-3.2 Equivalent circuit for the impedance spectra in Fig. 5-2-1-3.1. N:Nernst diffusion impedance;Rct:charge transfer resistance of one electrode;C:double layer capacity of one electrode;Rs:series resistance [35]. 131 Fig. 5-2-1-3.3 Nyquist plots of G.BCI with (a) 30wt%PEGDME, (b) 50wt%PEGDME, and (c) 70wt%PEGDME at different applied voltage for two-electrodes test. 132 Fig. 5-2-1-3.4 Nyquist plots of G.BCI with (a) 30wt%PEGDME, (b) 50wt%PEGDME, and (c) 70wt%PEGDME at different applied voltage for three-electrodes test. 133 Fig. 5-2-1-4-1.1 AFM morphologies of sputtering platinum for (a) 30s, (b) 90s, (c) 180s, and (d) 270s. 135 Fig. 5-2-1-4-1.2 SEM morphologies of sputtering platinum for (a) 30s, (b) 90s, (c) 180s, and (d) 270s. 135 Fig.5-2-1-4-3.1 Cyclic voltammograms of sputtering platinum for (1) 30s, (2) 90s, (3) 180s, and (4) 270s with G.BCI/50wt%PEGDME at the scan rate of 10mV/s. 139 Fig. 5-2-1-4-3.2 Nyquist plots of sputtering platinum for 30s, 90s, 180s, and 270s with G.BCI/50wt%PEGDME at the potential of (a) 0V and (b)-0.24V. 139 Fig. 5-2-2-1.1 Cyclic voltammograms of different scan rate in G.BCI/50wt%PEGDME. 142 Fig. 5-2-2-1.2 The plot of peak current density vs. (a) scan rate and (b) square root of scan rate with G.BCI/50wt%PEGDME as electrolyte. 142 Fig. 5-2-2-1.3 The thin-layer voltammetry. 143 Fig. 5-2-2-2.1 Cyclic voltammograms of G.BCI/50wt%PEGDME with spacer thickness of (1) 25μm, (2) 50μm, (3) 60μm, and (4) 85μm. 144 Fig. 5-2-2-2.2 Nyquist plots of G.BCI/50wt%PEGDME with spacer thickness of (1) 25μm, (2) 50μm, (3) 60μm, and (4) 85μm. 146 Fig. 5-2-3-1.1 I-V curves of DSSCs based on (1) MPN, (2) G.BCI/30wt%PEGDME, (3) G.BCI/50wt%PEGDME, and (4) G.BCI/70wt%PEGDME. 148 Fig. 5-2-3-2.1 Nyquist plots of (1) MPN, (2) G.BCI/30wt%PEGDME, (3) G.BCI/50wt%PEGDME, and (4) G.BCI/70wt%PEGDME. 150   表目錄 Table 1-1 Advantages and disadvantages of capacitor energy storage. 10 Table 1-2 Viscosity, conductivity, and diffusion coefficient of I3- in AN- and G.CI-based electrolytes[61]. 36 Table 2-4-5-3.1 Impedance equation for Equivalent circuit Element. 54 Table 3-2.1 Electrochemical potential window of different kinds of electrolyte using graphite carbon at a scan rate of 1mV/s. 69 Table 3-3-2-1.1 Specific capacitances for deep eutectic solvents and adding LiClO4 at different temperature and at scan rate of 1mV/s. 76 Table 3-3-2-2.1 Specific conductivity together with the corresponding activation energy for effect of adding LiClO4 in DESs at room temperature. 81 Table 3-3-2-3.1 Viscosity for the effect of adding LiClO4 in DESs at room temperature. 82 Table 3-3-3-3.1 Specific conductivity together with the corresponding activation energy for G.CC and G.CC with another additives at room temperature. 92 Table 3-3-3-3.2 Specific capacitances for G.CC and G.CC with additives at different scan rate and room temperature. 93 Table 3-3-3-3.3 Capacitance retention for G.CC and G.CC with additives at different temperature. 94 Table 4-2-1.1 The physical properties and specific capacitance of different scan rate for 1M LiClO4/PC, 1M LiClO4/EG, and 1M LiClO4/GBL. 104 Table 4-2-2.1 The physical and electrochemical properties for the co-solvent electrolytes. 107 Table 4-2-3-1.1 Viscosity and capacitance retention of different volume ratio of GBL/PC in 1M LiClO4. 112 Table 4-2-3-2.1 Specific capacitance of different volume ratio of GBL/PC at different scan rate. 114 Table 4-2-4-1.1 Surface area and pore volume data of CNT annealing at 900 oC, ACF, and carbon aerogel. 118 Table 4-2-4-2.1 Dependence of Total Charge (qT*), Outer Charge (qo*) and Inner Charge (qi*) on the CNT electrode annealing at 900 oC, ACF electrode, and Carbon aerogel electrode at room temperature. 119 Table 5-2-1-2.1 Electrochemical properties of G.BCI with 30wt%PEGDME, 50wt%PEGDME, and 70wt%PEGDME for two-electrodes test and three-electrodes test. 129 Table 5-2-1-3.1 Charge-transfer resistance of G.BCI/50wt%PEGDME at different applied voltage for two-electrodes test. 133 Table 5-2-1-4-2.1 Electrochemical parameters estimated from CV curves of sputtering platinum for 270s, 180s, 90s, and 30s at 20mV s-1 in 0.5M H2SO4. 137 Table 5-2-2-1.1 Time demand of different scan rate. 143 Table 5-2-2-2.1 Electrochemical properties of G.BCI/50wt%PEGDME with different spacer thickness. 144 Table 5-2-3-1.1 I-V curves data of DSSCs with G.BCI/30wt%PEGDME, G.BCI/50wt%PEGDME, and G.BCI/70wt%PEGDME. 149 Table 5-2-3-2.1 Nyquist plots data of G.BCI/30wt%PEGDME, G.BCI/50wt%PEGDME, and G.BCI/70wt%PEGDME for DSSCs. 151

    參考文獻

    1. A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”,John Wiley & Sons, Singapore, 1980.
    2. D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London, 1979.
    3. 胡啟章編著,電化學原理與方法,五南圖書, 2007.
    4. 田福助編著,電化學理論與應用,第八版,新科技, 2001.
    5. A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837, 1990.
    6. 張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”,國立中正大學化工研究所碩士論文, 2000.
    7. R. Kotz, M. Carlen, Electrochimica Acta, 45, 2483 (2000).
    8. R. P. Simpraga and B. E. Conway, Electrochimica Acta, 43, 3045 (1998).
    9. C. C. Hu, Y. H. Huang, Journal of The Electrochimical Society, 146, (7), 2465 (1999).
    10. S. Maeda, D.B. Cairns and S.P. Armes, Eur. Polym. J, 3, 245-253 (1997).
    11. E. K. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon, S. Holdcroft, Electrochimica Acta, 44, 2559-2569 (1999).
    12. K. K. Liu and M. A. Anderson, Journal of The Electrochimical Society, 143, 124 (1996).
    13. J. P. Zheng and T. R. Jow, Journal of The Electrochimical Society, 142, L6-L8 (1995).
    14. V. Srinivasan and J. W. Weidner, Journal of The Electrochimical Society, 147, 880 (2000).
    15. C. Lin, J.A. Ritter, and B.N. Popov, Journal of The Electrochimical Society, 146(9), 3155-3160 (1999).
    16. 江鴻儒, “循環伏安法及電鍍法制備釕電極在電化學電容器之應用”, 國立中正大學化工研究所碩士論文, 2001.
    17. M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, 7, 1391–1398 (2000).
    18. T. Sato, G. Masuda, K. Takagi, Electrochimica Acta, 49, 3603–3611 (2004).
    19. M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, Journal of The Electrochimical Society, 141, 7, 1730–1735 (1994).
    20. M. Ue, M. Takeda, T. Takahashi, and M. Takehara, Electrochemical and Solid-State Letters, 5, (6), A119-A121 (2002).
    21. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, and Y. Itob, Journal of The Electrochimical Society, 150, (4), A499-A502 (2003)
    22. A. Lewandowski, M. Galinski, Journal of Physics and Chemistry of Solids, 65, 281–286 (2004)
    23. N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa, Journal of Power Sources, 185, 1585–1588 (2008).
    24. K. Yuyama, G. Masuda, H. Yoshida, T. Sato, Journal of Power Sources, 162, 1401–1408 (2006).
    25. J. N. Barisci, G. G. Wallace, D. R. MacFarlane, R. H. Baughman, Electrochemistry Communications, 6, 22–27 (2004).
    26. Y. J. Kim, Y. Matsuzawa, S. Ozaki, K. C. Park, C. Kim, M. Endo, H. Yoshida, G. Masuda, T. Sato, and M.S. Dresselhaus, Journal of The Electrochimical Society, 152, (4), A710-A715 (2005).
    27. A. Jarosik, S.R. Krajewski, A. Lewandowski, P. Radzimski, Journal of Molecular Liquids, 123, 43-50 (2006).
    28. M. Galinski, I. Stepniak, J. Appl Electrochem, 39, 1949–1953 (2009).
    29. G. P. Pandey, S. A. Hashmi, and Y. Kumar, Journal of The Electrochimical Society, 157, A105-A114 (2010).
    30. H. Every, A.G. Bishop, M. Forsyth, D.R. MacFarlane, Electrochimica Acta, 45, 1279-1284 (2000).
    31. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, Chemistry Letters, 26-27 (2001).
    32. R. Kawano and M. Watanabe, Chem. Commun., 2107-2109 (2005).
    33. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddun, M. Grätzel, Nature Materils, 7, 626-630 (2008).
    34. Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, Y. Huang, Solar Energy, 80, 1483-1488 (2006).
    35. A. Hauch, A. Georg, Electrochimica Acta, 46, 3457–3466 (2001).
    36. L. Bay, K. West, B. Winther-Jensen,T. Jacobsen, Solar Energy Materials & Solar Cells, 90, 341–351, (2006).
    37. V. Jovanovski, E. Stathatos, B. Orel, P. Lianos, Thin Solid Films, 511-512, 634 -637 (2006).
    38. C. P. Lee, P. Y. Chen, R. Vittal, K. C. Ho, Journal of Materials Chemistry, 20, 2356-2361 (2010).
    39. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M.Grätzelz, Journal of The Electrochemical Society, 153 (12), A2255-A2261 (2006).
    40. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng, Electrochemistry Communications, 9, 596–598 (2007).
    41. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagiday, Chemistry Letters, 32, 28-29 (2003).
    42. G. Wang,W. Xing, S. Zhuo, Journal of Power Sources, 194, 568–573 (2009).
    43. N. Ikeda, K. Teshima, T. Miyasaka, Chem. Commun., 1733-1735 (2006).
    44. B. X. Lei, W. J. Fang, Y. F. Hou, J. Y. Liao, D. B. Kuang, C. Y. Su, Journal of Photochemistry and Photobiology A : Chemistry, 216, 8-14 (2010).
    45. D. Battisti, G. A. Nazri, B. Klassen, R. Aroca, J. Phys. Chem., 97, 5826-5830 (1993).
    46. E. Lust, A. Jänes, M. Arulepp, Journal of Electroanalytical Chemistry, 562, 33-42 (2004).
    47. M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rummaa, A. Jänes, E. Lust, Journal of Power Sources, 133, 320-328 (2004).
    48. C. P. Tien, W. J. Liang, P. L. Kuo, H. S. Teng, Electrochimica Acta, 53, 4505-4511 (2008).
    49. C. P. Tien, H. S. Teng, Journal of the Taiwan Institute of Chemical Engineers, 40, 452-456 (2009).
    50. R. Chandrasekaran, M. Koh, A. Yamauchi, M. Ishikawa, Journal of Power Sources, 2009.
    51. E. Frackowiak, F. Beguin, Carbon, 39, 937-950 (2001).
    52. M. Morita, T. Kaigaishi, N. Yoshimoto, M. Egashira, T. Aida, Electrochem. Solid-State Lett., 9, A386-A389 (2006).
    53. C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc., 130, 2730-2731 (2008).
    54. R. Mysyk, E. Raymundo-Pinero, J. Pernak, F. Beguin, J. Phys. Chem. C, 113, 13443-13449 (2009).
    55. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun., 70–71 (2003).
    56. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc., 126, 9142-9147 (2004).
    57. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang , Y. Yang, Journal of Power Sources,158, 773-778 (2006).
    58. F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, G. Wang, Journal of Power Sources, 184, 402-407 (2008).
    59. A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, E. Raven, Green Chem., 9, 868-872 (2007).
    60. H. G. Morrison, C. C. Sun, S. Neervannan, International Journal of Pharmaceutics, 378, 136-139 (2009).
    61. H. R. Jhong, D. S. H. Wong, C. C. Wan, Y. Y. Wang, T. C. Wei, Electrochemistry Communications, 11, 209-211 (2009).
    62. B. Zhang, J. Liang, C.L. Xu, B.Q. Wei, D.B. Ruan, D.H. Wu, Materials Letters, 51, 539-542 (2001).
    63. C. W. Huang, C. M. Chuang, J. M. Ting, H. S. Teng, Journal of Power Sources, 183, 406-410 (2008).
    64. R. Chandrasekaran, Y. Soneda, J. Yamashita, M. Kodama, H. Hatori, J. Solid State Electrochem, 12, 1349-1355 (2008).
    65. S. Yamazaki, A. Takegawa, Y. Kaneko, J. Kadokawa, M. Yamagata ,M. Ishikawa, Electrochemistry Communications, 11, 68-70 (2009).
    66. 陳俊宏, “鈷系氧化物電極材料之合成,鑑定與應用”, 國立清華大學化工研究所碩士論文, 2010.
    67. J. R. MacDonald, “Impedance spectroscopy:emphasizing solid materials and systems”, Wiley, New York (1987).
    68. 葉玉堂, “紅外光吸收光譜儀”, 行政院國家科學委員會精密儀器發展中心, 儀器總覽 4 化學分析儀器, 19–21, 1998.
    69. A. Jänes, E. Lust, Journal of Electroanalytical Chemistry, 588, 285-295 (2006).
    70. A. Jänes, E. Lust, Electrochemistry Communications, 7, 510-514 (2005).
    71. M. Ue, K. Ida, S. Mori, Journal of The Electrochimical Society, 141, 2989-2996 (1994).
    72. S. S. Krishnam, S. Soundara, Journal of physical chemistry, 73, 4036 (1969).
    73. M. Takeuchi, Y. Kameda, Y. Umebayashi, S. Ogawa, T. Sonoda, S. Ishiguro, M. Fujita, M. Sano, Journal of Molecular Liquids, 148, 99-108 (2009).
    74. M. C. Smart, B. V. Ratnakumar, S. Surampudi, Journal of The Electrochemical Society, 149 (4), A361-A370 (2002).
    75. E. J. Plichta, S. Slane, Journal of Power Sources, 69, 41-45 (1997).
    76. M. Anouti, P. Porion, C. Brigouleix, H. Galiano, D. Lemordant, Fluid Phase Equilibria, 299, 229-237 (2010).
    77. D. Baronetto, N. Krstajic, S. Trasatti, Electroehimica Acta, 39 (16), 2359-2362 (1994).
    78. K. H. Chang, C. C. Hu, C. Y. Chou, Chem. Mater., 19, 2112-2119 (2007).
    79. S. Ardizzone, G. Fregonara, S. Trasatti, Electroehimica Acta, 35 (1), 263-267 (1990).
    80. Y. Cao, J. Zhang, Y. Bai, R. Li, S. M. Zakeeruddin, M. Grätzel, P. Wang, J. Phys. Chem. C, 112, 13775-13781 (2008).
    81. A. Petrocco, M. Liberatore, A. D. Carlo, A. Reale, T. M. Brown, F. Decker, Phys. Chem. Chem. Phys., 12, 10786-10792(2010).
    82. 顧書源, “四級銨鹽為基礎之室溫離子液體作為電解質溶劑於染料敏化太陽能電池上之應用”, 國立清華大學化工研究所碩士論文, 2010.
    83. J. L. Lan, Y. Y. Wang, C. C. Wan, T. C. Wei, H. P. Feng, C. Peng, H. P. Cheng, Y. H.Chang, W. C. Hsu, Current Applied Physics,10, S168-S171 (2010).
    84. S. Y. Yang, K. H. Chang, Y. F. Lee, C. C. M. Ma, C. C. Hu, Electrochemistry Communications,12, 1206-1209 (2010).
    85. S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, T. H. Lee, Electrochimica Acta, 43 (24), 3693-3701 (1998).
    86. O. J. Curnick, P. M. Mendes, B. G. Pollet, Electrochemistry Communications, 12, 1017-1020 (2010).
    87. C. P. Lee, K. M. Lee, P. Y. Chen, K. C.Ho, Solar Energy Materials & Solar Cells, 93, 1411-1416 (2009).
    88. A. P. Abbott, K. E. Ttaib, G. Frisch, K. J. McKenzie, K. S. Ryder, Phys. Chem. Chem. Phys., 11, 4269-4277 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE