簡易檢索 / 詳目顯示

研究生: 陳盈修
Chen, Ying Hsiu
論文名稱: 高功率三相三線式雙向換流器研製
Design and Implementation of High Power Three-Phase Three-Wire Bi-directional Inverter
指導教授: 吳財福
Wu, Tsai Fu
口試委員: 鄒應嶼
Tzou, Ying Yu
江炫樟
Chiang, Hsuang Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 分切合整數位控制兩相調變寬廣感值變化雙向換流器高功率
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研製一部三相三線式雙向換流器,其功能包含市電併聯及整流功能,電路分為電力級與控制級兩部份,在市電併聯模式中,將直流電轉換成交流電饋入市電電網;在整流模式中,將市電轉換成直流電供給直流負載。電力級之電路採用三相三線式全橋架構,控制級使用微控制器Renesas RX62T來實現本研究所採用之分切合整數位控制法,其優點為不必受限於傳統控制法所採用的abc至d-q座標轉換,且克服電感值隨電流增大而衰減之問題,並有效降低鐵芯尺寸及適用於三相電壓失真含有諧波之情況。本文首先對換流器進行建模,接著基於分切合整數位控制的精神,透過抵消系統參數如直流鏈電壓、切換週期及電感變化對受控體的影響,來得到開關責任比率的控制法則,並以向量調變之方式來推導基於兩相調變之下的開關責任比率公式,且說明系統之穩壓機制以及電感鐵芯規格與材質之選擇。最後實作一部單相三線式雙向換流器,並經由實測結果驗證本研究所提出之理論與換流器操作之可行性。
    本研究主要有兩項貢獻:第一為推導開關責任比率控制法則的過程與文獻中關於分切合整數位控制的推導不同,本論文在推導過程中遵循傳統控制系統的程序,首先對系統建模,接著設計其控制器進而得到開關責任比率公式,最後得出整個系統的控制方塊圖並且分析其穩定度。第二為將分切合整數位控制應用於高功率系統,並且改善元件之非理想特性所造成的影響。


    This thesis presents design and implementation of a three-phase three-wire bi-directional inverter with two operation modes, grid-connection mode and rectification mode. In grid-connection mode, the power is transformed into AC and injected into the utility grid. In rectification mode, power from the utility grid is transformed into DC to supply DC loads. The circuit is divided into two parts, including a power stage with the configuration of a three-phase three-wire full-bridge inverter and a control stage with a single-chip micro-controller Renesas RX-62T implementing the control law of Division-Summation (D-Σ) Digital Control. With the proposed control method, the limitations of abc to d-q frame transformation can be overcome and the core size can be reduced significantly, since inductance variation is taken into account. Additionally, the proposed control method can accommodate the effect of three-phase voltage distortion and imbalance. First, plant derivation based on D-Σ digital control is discussed. Next, the controller is derived with the aim of canceling the variation effects of dc voltage, switching period and inductances. Then, the derivation of duty ratios based on Two-Phase Modulation with the reallocation of T0 and T7 is explained in detail. In addition, the mechanism of DC-bus voltage regulation and selection of the inductor core are also presented. Finally, the inverter has been implemented and tested. Simulated and experimental results have verified the feasibility of the proposed control scheme.
    There are two major contributions in this research. First, the derivation of duty-ratios is different from that in the literature related to D-Σ digital control. In this research, the derivation follows the procedure of the conventional control system theory in which the plant is derived first, and then the controller is designed. Finally, a system control block diagram is obtained and stability is analyzed. Secondly, the D-Σ digital control is applied to a 60 kW power converter system and the effects caused by nonideal characteristics of the components are considered and improved.

    目錄 摘 要 i Abstract ii 誌謝 iii 目錄 iv 圖表目錄 vi 表目錄 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 2 1-2-1 實功處理控制法則 3 1-2-2 虛功處理控制法則 5 1-2-3 實虛功整合處理通式 7 1-3 論文大綱 10 第二章 D-Σ數位控制 11 2-1 換流器架構 11 2-2 控制法則 12 2-2-1 換流器電流源建模 12 2-2-2 補償器設計 15 2-2-3 穩定度分析 16 2-2-4 兩相調變(TPM) 18 2-2-5 穩壓機制 22 第三章 周邊電路設計 25 3-1 輔助電源 25 3-2 電壓箝位保護電路 27 3-3 市電電壓偵測電路 27 3-4 直流鏈電壓偵測電路 30 3-5 三相換流器輸出電流感測電路 30 3-6 過壓/過流保護電路 31 3-7 開關隔離驅動電路 32 3-8 直流鏈預充電路 33 第四章 韌體規劃 35 4-1 換流器韌體架構 35 4-2 微控制器簡介 35 4-3 控制流程規劃 39 4-3-1 系統主程式 39 4-3-2 輸入捕捉中斷模組 41 4-3-3 A/D中斷模組 43 第五章 電路製作與實務考量 45 5-1 電氣規格 45 5-2 轉換器元件選擇 46 5-2-1 功率開關 46 5-2-2 電感與鐵芯 47 5-3 實務考量 50 5-3-1 斷路器彈跳造成電路誤動作 50 5-3-2 市電電壓飄動與零交越電流失真 51 5-3-3 繼電器驅動能力不足 55 5-3-4 設備之額定功率不足 57 5-3-5 元件非理想特性 58 5-4 模擬與實作驗證 68 5-4-1 整流兼功因校正模式 68 5-4-2 市電併聯模式 71 5-4-3 穩壓功能測試 74 5-4-4 寬廣電感值變化測試 78 5-4-5 功率元件溫升紀錄 81 5-4-6 系統整合 85 5-5 損耗分析 89 第六章 結論與未來研究方向 91 6-1 結論 91 6-2 未來研究方向 92 參考文獻 93

    參考文獻
    [1] REN21, “Renewables 2012 Global Status Report”, Jun. 2014.
    [2] 林奇德,具功因修正與市電併聯功能之直流供電系統,國立中正大學電機工程研究所碩士論文,2006年。
    [3] 吳財福、陳裕愷、張健軒,太陽能光電能供電與照明系統,全華,2006年。
    [4] B. Liu, X. Yang, Y. Zhang, H. Ye and F. Kong, “A new control strategy combing PI and quasi-PR control under rotate frame for three phase grid-connected photovoltaic inverter,” ICPE & ECCE Power Electron., 8th, pp. 882–888, June 2011.
    [5] I. Lar, M.M. Radulescu, E. Ritchie and A.A. Pop, “Current control methods for grid-side three-phase PWM voltage-source inverter in distributed generation systems,”OPTIM Optimization of Electrical,13th, pp. 859–867, 2012.
    [6] Q. Zeng and L. Chang, “An Advanced SVPWM-Based Predictive Current Controller for Three-Phase Inverters in Distributed Generation Systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp.1235-1246, Mar. 2008.
    [7] J. M. E. Huerta, J. Castelló-Moreno, J. R. Fischer and R. García-Gil, “A Synchronous Reference Frame Robust Predictive Current Control for Three-Phase Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp.954-962, Mar. 2010.
    [8] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez and F. Blaabjerg, “Evaluation of Current Controllers for Distributed Power Generation Systems,” IEEE Transactions on Power Electronics, vol. 24, no. 3, pp.654-664, Mar. 2009.
    [9] M. Mohseni and S. M. Islam, “A New Vector-Based Hysteresis Current Control Scheme for Three-Phase PWM Voltage-Source Inverters,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp.2299-2309, Sep. 2010.
    [10] T. Ghennam, E. M. Berkouk and B. Francois, “A Novel Space-Vector Current Control Based on Circular Hysteresis Areas of a Three-Phase Neutral-Point-Clamped Inverter,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp.2669-2678, Aug. 2010.
    [11] A. Bouafia, J. P. Gaubert, and F. Krim, “Predictive Direct Power Control of Three-Phase Pulse Width Modulation (PWM) Rectifier Using Space-Vector Modulation (SVM),” IEEE Trans. on Power Electronics, vol. 25, no. 1, pp. 228-236, Jan. 2010.
    [12] T. Jin, L. Li, and K. M. Smedley, “A Universal Vector Controller for Four-Quadrant Three-Phase Power Converter,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 54, no. 2, pp.377-390, Feb. 2007.
    [13] 林庭世,三相三線式雙向換流器研製,國立中正大學電機工程研究所碩士論文,2010年七月。
    [14] 陳至鈞,三相三線式20 kW雙向換流器研製,國立中正大學電機工程研究所碩士論文,2012年七月。
    [15] T.-F. Wu, C.-H. Chang, L.-C. Lin, G.-W. Yu and Y.-R. Chang, “A D-Σ Digital Control for Three-Phase Inverter to Achieve Active and Reactive Power Injection,"IEEE Trans. Power Electron., vol. 61, no. 8, pp.3879-3890, Aug. 2014.
    [16] 蔡昆宏,分切合整數位控制與兩相調變或空間向量調變之三相雙向換流器性能比較,國立清華大學電機工程研究所碩士論文,2014年七月。
    [17] T.-F. Wu, C.-L. Kuo, K.-H. Sun, and G.-R. Yu, “DC-Bus Voltage Regulation with Bi-directional Inverter in DC Distribution System” APEC. 2012 Twenty-Seventh Annual IEEE, pp.769-774, Feb. 2012.
    [18] UC3843 Group Datasheet, Fairchild, 2002.
    [19] 蔡宇傑,三相雙向換流器系統之控制器周邊與通訊介面研製,國立中正大學電機工程研究所碩士論文,2011年7月。
    [20] RX62T Group Datasheet Rev. 1.00, Renesas, 2011.
    [21] Magnetic Powder Cores Ver. 8.
    [22] 1EDI EiceDRIVER Compact Rev. 1.00, Infineon, 2013
    [23] CM200DY-24A Group Datasheet, Mitsubishi, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE