簡易檢索 / 詳目顯示

研究生: 唐健彬
Tang, Jian-Bin
論文名稱: 使用光注入方式達到波長可切換式摻鉺光纖雷射之研究
Study of Wavelength-Switchable Erbium Doped Fiber Laser by Optical Injection
指導教授: 王立康
Wang, Li-Karn
口試委員: 賴暎杰
劉文豐
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 摻鉺光纖光纖雷射
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之實驗架構設置包括三個反射波長分別為1545.3nm、1550.2nm與1555.2nm的布拉格光纖光柵,其反射率皆約為87%,用其作為雷射輸出波長的選擇元件。將此三個布拉格光纖光柵連接後形成三個共振腔,在經過一系列摻鉺光纖長度的測試之後,找出適合此三個共振腔的摻鉺光纖長度做為增益介質,同時由一波長為1480nm的半導體雷射做為泵激光源,隨著泵激光源功率的逐步提升,此三段摻鉺光纖也能依序的被有效激發,因此,整個實驗架構一開始可以藉由改變泵激光源的功率大小獲得初步的雷射輸出波長可調性質。
    本論文主要設計的實驗架構概念是藉由外部光學注入的方式造成雷射輸出波長發生切換的行為。藉由此種外部光學注入,我們得以改變固定泵激光源功率下各雷射波長在摻鉺光纖內的增益競爭優勢,因而可以於共振腔輸出端偵測到雷射輸出波長切換的情形。此種切換方式,相較於需要改變泵激光源功率來進行切換的行為來說,雷射輸出功率穩定度更佳,而且雷射輸出功率也獲得了提升,另外,此種切換雷射輸出波長的方式也比較方便。


    目錄 摘要......................................................I 目錄.....................................................II 圖目錄..................................................III 表目錄.................................................VIII 第一章 緒論...............................................1 1.1研究背景...............................................1 1.2文獻回顧...............................................3 1.3研究動機...............................................4 第二章 實驗原理...........................................6 2.1摻鉺光纖放大器之應用原理...............................6 2.2摻鉺光纖雷射之應用原理................................12 2.3摻鉺光纖Homogeneous特性之介紹.........................15 第三章 實驗結果與分析討論................................19 3.1實驗架構與元件之介紹..................................19 3.2實驗架構之設計分析....................................22 3.3外部光學注入之實驗結果................................37 第四章 結論..............................................58 參考文獻.................................................60

    [1] Likourezos, G., “Jan. 28, 1958: A laser is born,” IEEE Spectrum., vol. 29, no. 5, pp. 43, 1992.

    [2] G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 606-608, 2002.

    [3] R. Slavik and S. LaRochelle, “Multiwavelength single-mode erbium doped fiber laser for FFH-OCDMA testing,” in Proc. OFC2002, Paper WJ3, pp. 245-246, 2002.

    [4] S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett., vol. 13, no. 4, pp. 350-351, 2001.

    [5] L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol., vol. 19, no. 4, pp. 553-558, 2001.

    [6] S. K. Liaw, C. C. Lee, K. P. HO, and S. Chi, “Power equalized wavelength-selective fiber lasers using fiber Bragg gratings,” Opt. Commun., vol. 155, pp. 255-259, 1998.

    [7] J. Nilsson, Y. W. Lee, and S. J. Kim, “Robust dual-wavelength ring-laser based on two spectrally different erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., vol. 8, no. 12, pp. 1630-1632, 1996.

    [8] B. J. Eggleton, P. A. Krug, L. Poladian, and F. Quellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett., vol. 30, no. 19, pp. 1620-1622, 1994.

    [9] X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber grating,” Opt. Lett., vol. 23, no. 7, pp. 509-510, 1998.

    [10] G. E. Town, K. Sugden, J. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fibers,” IEEE Photon. Technol. Lett., vol. 7, no. 1, pp. 78-80, 1995.

    [11] R. Kashyap, “A new class of fiber grating based band-pass filters: The asymmetric interferometer,” Opt. Commun., vol. 153, pp. 14-18, 1998.

    [12] 許克丞, 使用光纖光柵之可調式光纖雷射研究, 碩士論文 國立清華大學, 民國九十六年.

    [13] 宋柏賢, 波長連續可調式摻鉺光纖雷射之研究, 碩士論文 國立清華大學, 民國九十七年.

    [14] 薛志堅, 藉彎曲單模光纖之C-band和L-band波長可調式光纖雷射之研究, 碩士論文 國立清華大學, 民國九十九年.

    [15] P. C. Peng, H. Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 661-663, 2003.

    [16] S. Yamashita, and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,” IEEE J. Select. Topics Quantum Electron., vol. 7, no. 1, pp. 41-43, 2001.

    [17] M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Tarasov “Jitter and dynamics of self-seeded Fabry-Perot laser diodes,” IEEE J. Select. Topics Quantum Electron., vol. 1, no. 2, pp. 528-534, 1995.

    [18] X. Lei, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “Optical spectral bistability in a semiconductor fiber ring laser through gain saturation in an SOA,” IEEE Photon. Technol. Lett., vol. 14, no. 2, pp. 149-151, 2002.

    [19] J. He and K. T. Chan, Technical Digest of the Conference on Lasers and Electro-Optics, pp. 1-6, 2003, Baltimore, USA, paper CWA51.

    [20] N. Yu, L. Zhan, L. Xing, S. Y. Luo, and Y. X. Xia, “Switchable erbium-doped fiber laser using optical-injection controlling,” Laser Phys. Lett., vol. 5, no. 3, pp. 206-209, 2008.

    [21] C. H. Yeh, C. W. Chow, F. Y. Shih, C. H. Wang, Y. F. Wu, and S. Chi, “Tunable dual-wavelength fiber laser using optical-injection Fabry-Perot laser,” IEEE Photon. Technol. Lett., vol. 21, no. 3, pp. 125-127, 2009.

    [22] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-μm band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” J. Lightwave Technol., vol. 17, no. 3, pp. 490-496, 1999.

    [23] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Select. Topics Quantum Electron., vol. 3, no. 4, pp. 991-1007, 1997.

    [24] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Select. Topics Quantum Electron., vol. 30, no. 8, pp. 1817-1830, 1994.

    [25] G. P. Agrawal, Applications of Nonlinear Fiber Optics, Second Edtion, Chap. 4.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE