研究生: |
許如宏 Hsu Ju-Hung |
---|---|
論文名稱: |
利用原子力顯微術製作奈米結構並應用於選區成長一維奈米材料 Fabrication of nanostructures by atomic force microscopy and its application to the selective growth of 1-D nanomaterials |
指導教授: |
林鶴南
Lin Heh-Nan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 原子力顯微術 、奈米結構 、選區成長 、一維奈米材料 、奈米加工 |
外文關鍵詞: | atomic force microscopy, nanostructure, selective growth, 1-D nanomaterial, nanolithography |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在利用原子力顯微術奈米微影(AFM nanolithography)製作奈米結構,並將其應用於選區成長一維奈米材料。文中主要介紹原子力奈米氧化(nano-oxidation)及奈米雕刻(nanomachining)兩種奈米微影方法。在AFM探針與樣品表面間加一電場,使吸附於表面的水膜解離造成樣品表面氧化,稱為奈米氧化。利用奈米氧化在矽基板上所製作之氧化矽結構最小約為100 nm。在鎳膜上則可製作出最小約為27 nm之氧化鎳奈米點。之後為了達成選區成長之目的,利用濕式化學蝕刻移除未氧化之鎳膜,留下的氧化鎳結構則可用來成長奈米碳管及氧化矽奈米線。
將奈米雕刻結合lift-off技術可簡單製作出金屬奈米結構。首先在樣品表面旋鍍上PMMA,之後利用AFM探針在表面上刻畫出各式圖樣,隨著鍍上不同金屬再進行lift-off,則可製作出各式金屬之奈米結構。此方法可在矽基板上製作出大小約20 nm之金奈米點。除了金屬奈米點之外,像是奈米線及奈米電極都可以利用此方法製作。所製作的金屬奈米結構也可應用於一維奈米材料選區成長,本論文利用金和鎳奈米結構分別選區成長氧化鋅和氧化矽奈米線。另外,金屬奈米結構之局部表面電漿共振特性(localized surface plasmon resonance)也可在光學顯微鏡之暗視野下觀察其所呈現的顏色。
The techniques regarding the fabrication of nanostructures by atomic force microscopy (AFM) nanolithography including nano-oxidation and nanomachining are explored. Corresponding mechanisms and application to the selective growth of one-dimensional nanomaterials are also discussed in this thesis.
By applying a bias to an AFM probe, a strong field between the probe and the sample leads to the occurrence of local oxidation that is called AFM nano-oxidation. AFM nano-oxidation was performed silicon and nickel, and the smallest oxide dot sizes were around 100 nm and 27 nm, respectively. After the removal of unoxidized nickel by wet chemical etching, the residual nickel oxide patterns were used for the selective growth of one-dimensional nanomaterials such as carbon nanotubes and silica nanowires.
The fabrication of metal nanostructures by AFM nanomachining and subsequent lift-off was also accomplished. AFM nanomachining was firstly performed on a thin resist pre-coated on a silicon or sapphire substrate, and then metal was coated. After lift-off process, metal nanostructures were created successfully. By coating different metal, various metal nanostructures could be created by this stable process and the smallest nanodot size of gold coated on silicon substrate was 20 nm. The selective growth of zinc oxide and silica nanowires was also successfully realized with the use of catalytic gold and nickel nanopatterns, respectively. Localized surface plasmon resonance of metal nanostructures was also observed by dark-field optical microscope.
[1-1] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).
[1-2] D. W. Pohl and D. Courjon, Near Field Optics, Dordrecht: Kluwer (1993).
[1-3] G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
[1-4] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys. 61 4723 (1987).
[1-5] Y. Martin and H. K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987).
[1-6] C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).
[1-7] Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).
[1-8] C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, Appl. Phys. Lett. 55, 1662 (1989).
[1-9] P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Eling, and P. K. Hansma, Nanotechnology 2, 103 (1991).
[1-10] Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Surf. Sci. 290, L688 (1993).
[1-11] K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, Appl. Phys. Lett. 79, 1534 (2001).
[1-12] Z. L. Wang, MaterialsToday June, 26 (2004).
[1-13] T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, Nano Lett. 4, 699 (2004).
[1-14] H.-N. Lin, Y.-H. Chang, J.-H. Yen, J.-H. Hsu, I.-C. Leu, and M.-H. Hon, Chem. Phys. Lett. 399, 422 (2004).
[1-15] J.-H. Hsu, C.-Y. Lin, and H.-N. Lin, J. Vac. Sci. Technol. B 22, 2768 (2004).
[2-1] H. T. Soh, K. W. Guarini, and C. F. Quate, Scanning Probe Lithography, Boston: Kluwer (2001).
[2-2] T. T. Tsong, Phys. Rev. B 44, 13703 (1991).
[2-3] S. Hosaka, H. Koyanagi, and A. Kikukawa, Jan. J. Appl. Phys. 32, L464 (1993).
[2-4] S. Hosaka, H. Koyanagi, A. Kikukawa, Y. Maruyama, and R. Iruma, J. Vac. Sci. Technol. B 12, 1872 (1994).
[2-5] C. Baur, A. Bugacov, B. E. Koel, A. Madhukar, N. Montoya, T. R. Ramachandran, A. A. G. Requicha, R. Resch, and P. Will, Nanotechnology 9, 360 (1998).
[2-6] L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995).
[2-7] H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, and D. Roger, IBM J. of Res. and Dev. 39, 681 (1995).
[2-8] A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham and J. Alexander, Appl. Phys. Lett. 61, 2293 (1992).
[2-9] R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, Nature 283, 661 (1999).
[2-10] H. Zhang, S.-W. Chung, and C. A. Mirkin, Nano Lett. 3, 43 (2003).
[2-11] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990).
[2-12] H. C. Day, and D. R. Allee, Appl. Phys. Lett. 62, 2691 (1993).
[2-13] E. S. Snow, and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994).
[2-14] S. C. Minne, H. T. Soh, P. Flueckiger, and C. F. Quate, Appl. Phys. Lett. 66, 703 (1995).
[2-15] K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, Appl. Phy. Lett. 68, 34 (1996).
[2-16] D. Wang, L. Tsau, K. L. Wang, and P. Chow, Appl. Phys. Lett. 67, 1295 (1995).
[2-17] E. S. Snow and P. M. Campbell, Science 270, 1639 (1995).
[2-18] B. Irmer, M. Kehrle, and J. P. Kotthaus, Appl. Phys. Lett. 71, 1733 (1997).
[2-19] E. S. Snow, D. Park, and P. M. Campbell, Appl. Phys. Lett. 69, 269 (1996).
[2-20] M. Rolandi, C. F. Quate, and H. Dai, Adv. Mater. 14, 191 (2002).
[2-21] X. Jin and W. N. Unertl, Appl. Phys. Lett. 61, 657 (1992).
[2-22] Y. Kim and C. M. Lieber, Science 257, 375 (1992).
[2-23] M. Wendel, S. Kühn, H. Lorenz, J. P. Kotthaus, and M. Holland, Appl. Phys. Lett. 65, 1775 (1994).
[2-24] B. Klehn and U. Kunze, J. Appl. Phys. 88, 3897 (1999).
[2-25] K. Wiesauer and G. Springholz, J. Appl. Phys. 88, 7289 (2000).
[2-26] L. A. Porter, Jr., A. E. Ribbe, and J. M. Buriak, Nano Lett. 3, 1043 (2003).
[2-27] L. Santinacci, T. Djenizian, and P. Schmuki, Appl. Phys. Lett. 79, 1882 (2001).
[2-28] L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995).
[2-29] V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996).
[2-30] S. Hu, A. Hamidi, S. Altmeyer, T. Köster, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol. B 16, 2822 (1998).
[2-31] M. Rolandi, C. F. Quate, and H. Dai, Adv. Mater. (Weinheim, Ger.) 14, 191 (2002).
[2-32] P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. Binnig, IBM J. of Res. and Dev. 44, 323 (2000).
[3-1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F, Kim, and H. Yan, Adv. Mater. 15, 353 (2003).
[3-2] Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003).
[3-3] Z. L. Wang, Adv. Mater. 15, 432 (2003).
[3-4] S. Iijima, Nature 354, 56 (1991).
[3-5] S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
[3-6] T. W. Ebbesen, Carbon Nanotubes Preparation and Properties, Boca Raton: CRC (1997).
[3-7] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, Nature 391, 62 (1998).
[3-8] J. H. Huang, C. C. Chuang, and C. H. Tsai, Microelectron. Eng. 66, 10 (2003).
[3-9] J. H. Yen, I. C. Leu, C. C. Lin, and M. H. Hon, Appl. Phys. A 80, 415 (2005).
[3-10] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature 384, 147 (1996).
[3-11] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology 13, 1 (2002).
[3-12] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001).
[3-13] J. X Wang, D. F. Liu, X. Q. Yan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Z. Zhou, G. Wang, and S. S. Xie, Solid State Commun. 130, 89 (2004).
[3-14] C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. 13, 1330 (2001).
[3-15] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, J. Cryst. Growth 184/185, 601 (1998).
[3-16] H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seeling, X. Liu, and R. P. H. Chang, Phys. Rev. Lett. 84, 5584 (2000).
[3-17] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao,S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[3-18] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[3-19] Z. L. Wang, MaterialsToday June, 26 (2004).
[3-20] W. I. Park and G.-C. Yi, Adv. Mater. 16, 87 (2004).
[3-21] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002).
[3-22] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, Appl. Phys. Lett. 79, 7983 (1996).
[3-23] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, Phys. Rev. B 45, 586 (1992).
[3-24] L.-S. Liao, X.-M. Bao, X.-Q. Zheng, N.-S. Li, and N.-B. Min, Appl. Phys. Lett. 68, 850 (1996).
[3-25] J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 367, 339 (2003).
[3-26] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998).
[3-27] G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, L. D. Zhang, Appl. Phys. A 76, 119 (2003).
[3-28] L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003).
[3-29] Y. W. Wang, C. H. Liang, G. W. Meng, X. S. Peng, and L. D. Zhang, J. Mater. Chem. 12, 651 (2002).
[3-30] B. Park and K. Yong, Surf. Rev. Lett. 11, 179 (2004).
[3-31] B. J. Murray, E. C. Walter, and R. M. Penner, Nano Lett. 4, 665 (2004).
[3-32] C. Z. Li, H. Sha, N. J. Tao, Phys. Rev. B 58, 6775 (1998).
[3-33] C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch, N. J. Tao, Appl. Phys. Lett. 76, 1333 (2000).
[3-34] E. C. Walter, F. Favier, and R. M. Penner, Anal. Chem. 74, 1546 (2002).
[3-35] E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach and F. Favier, Surf. Interface Anal. 34, 409 (2002).
[3-36] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[3-37] E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).
[3-38] S. Link, M. and A. El-sayed, Annu. Rev. Phys. Chem. 54, 331 (2004).
[3-39] A. J. Haes, D. A. Stuart, S. Nie, and R. P. V. Duyne, J. Fluorescence 14, 355 (2004).
[3-40] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[3-41] S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
[3-42] C. J. Murphy and N. R. Jana, Adv. Mater. 14, 80 (2002).
[3-43] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and P. V. Duyne, J. Phys. Chem. B 103, 9846 (1999).
[3-44] K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 1087 (2003).
[3-45] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
[3-46] C. Sönnichsen, T. Franzl, T. Wilk, G. V. Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).
[5-1] R. Garcia, M. Calleja, and H. Rohrer, J. Appl. Phys. 86, 1898 (1999).
[5-2] B. Irmer, M. Kehrle, and J. P. Kotthaus, Appl. Phys. Lett. 71, 1733 (1997).
[5-3] Ph. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett. 71, 285 (1997).
[5-4] E. S. Snow, G. G. Jernigan, and P. M. Campbell, Appl. Phys. Lett. 76, 1782 (2000).
[5-5] J. A. Dagata, F. Perez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, and H. Yokoyama, Appl. Phys. Lett. 76, 2710 (2000).
[6-1] X. Jin and W. N. Unertl, Appl. Phys. Lett. 61, 657 (1992).
[6-2] B. Klehn and U. Kunze, J. Appl. Phys. 88, 3897 (1999).
[6-3] K. Wiesauer and G. Springholz, J. Appl. Phys. 88, 7289 (2000).
[6-4] L. Santinacci, T. Djenizian, and P. Schmuki, Appl. Phys. Lett. 79, 1882 (2001).
[6-5] V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996).
[6-6] M. E. Toimil Molares, E. M. Höhberger, C. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, Appl. Phys. Lett. 82, 2139 (2003).
[6-7] I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965). The employed NSC 15 is a conical tip with a diameter of 20 nm and a half angle of 10□. The approximation of a cylindrical punch is not an accurate one but still plausible since the penetration depth is only 50 nm.
[6-8] The Young’s modulus for PMMA is from R. J. Young and P. A. Lovell, Introduction to Polymers (Chapman & Hall, New York, 1991), p. 420. The Poisson’s ratio has a minor effect in the calculation and is taken as that of polystyrene.
[6-9] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, Appl. Phys. Lett. 79, 7983 (1996).
[6-10] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998).