簡易檢索 / 詳目顯示

研究生: 陳宥勳
Chen, You-Syun
論文名稱: 通過搭便車方式從小腸遞送抗癌藥物到大腦治療膠質母細胞瘤
Hitchhiking Delivery of an Anticancer Drug from Gut to Brain via Oral Route for Treating Glioblastoma
指導教授: 宋信文
Sung, Hsing-Wen
口試委員: 張燕
JHANG, YAN
李伯偉
LI, BO-WEI
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 34
中文關鍵詞: 口服膠質母細胞瘤前藥β-葡聚醣特洛伊木馬
外文關鍵詞: Oral delivery, Glioblastoma, Prodrug, β-glucan, Trojan horse
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經膠質瘤(glioma)是成人神經中樞系統腫瘤中最常見的原發性腫瘤(primary neoplasms),佔所有原發性神經中樞系統腫瘤中的63%。其中多形惡性神經膠質瘤(glioblastoma multiforme)是最具侵略性的神經膠質瘤之一。傳統上以外科手術切除、放射治療和化學藥物治療等方式來治療神經膠質瘤,但由於膠質母細胞瘤的侵襲能力很強,手術方法無法完全清除所有腫瘤極易復發。而放療與化療方法不具靶向性,對於人體正常組織也會造成損傷,造成極大的副作用。近年來,利用藥物遞送系統(drug delivery system)將藥物遞送到病灶處是熱門的領域。但就治療神經膠質瘤而言,藥物需通過血腦障壁(blood brain barrier)才能到達癌組織。由前人的研究發現,病原體雖然是大分子,卻可以透過「特洛伊木馬」(Trojan horse)的途徑以巨噬細胞為「木馬」穿越血腦障壁到達大腦內部。本研究利用β-葡聚醣作為藥物的載體,將β-葡聚醣與臨床上治療神經膠質瘤的藥物Temozolomide形成前藥(prodrug),前藥中β-葡聚醣與臨床性藥Temozolomide主要以雙硫鍵鍵結,當口服β-葡聚醣與Temozolomide為前藥口服之後,到小腸之後被小腸上的巨噬細胞吞噬進入血液迴圈最後透過「特洛伊木馬」的途徑,將藥物遞送到腦腫瘤組織中。當到達腫瘤組織時,由於腫瘤組織富含穀胱甘肽(Glutathione, GSH),可將雙硫鍵切斷,並將Temozolomide釋放出來,達到毒殺腫瘤組織的效果。本研究的實驗方法透過體外實驗培養模擬腫瘤組織的3D細胞球,證實巨噬細胞確實可以將藥物吞噬,浸潤到腫瘤組織內部。並在體外證實前藥可以有效的殺死腫瘤。同時利用口服的方式給予老鼠前藥的治療,並且透過觀察腫瘤大小的改變、老鼠體重的變化來觀察治療的療效。


    Gliomas are the most common primary neoplasm in central nervous system tumor of adult, accounting for 63% of all the tumor in primary central nervous system. Among them, glioblastoma multiforme is one of the most aggressive gliomas. Traditionally, the gliomas are treated by surgery, radiotherapy and chemotherapy. However, due to the strong invasiveness of glioblastomas, the surgery cannot completely remove the tumor. Also, the radiotherapy and chemotherapy cause damage to normal tissues to cause great side effects. Therefore, these methods are not effective in killing brain tumor. In recent years, the use of “drug delivery systems” is a popular research area. However, for treating gliomas, the drugs need to pass through the blood brain barrier to reach the brain tumor, and it blocks large molecules to go through it. The studies in these years found that although the pathogen is a large molecule, it can go through the blood-brain barrier through “Trojan horses” pathway. Therefore, we use β-glucan as drug carrier to synthesize prodrug, and use temozolomide as clinical drug for treating glioma. Also, the temozolomide is bonded with β-glucan by disulfide bonds. After orally administrating with prodrug, the prodrug is engulfed by macrophages in the small intestine and go into the blood circulation. Finally, it passes through the blood brain barrier through "Trojan horse" pathway. When the prodrug reaches the tumors, the disulfide bond in prodrug will be cut by GSH, which is rich in tumor. In this way, the temozolomide will be released and kill the tumor cells. The method in our study culturing 3D cell spheroids to mimic tumors to confirm that macrophages can engulf the drug and infiltrate the tumors. Also, the mice were treated with the prodrug orally to know the efficacy of the treatment that was observed by measuring the in tumor size and the weight of mice.

    一、緒論 1 1.1膠質母細胞瘤 1 1.1.1神經膠質瘤簡介 1 1.1.2神經膠質瘤的症狀 2 1.1.3神經膠質瘤傳統的療法 2 1.2 血腦障壁(Blood brain barrier, BBB) 3 1.3 β-葡聚醣(β-glucan) 4 1.4腫瘤相關巨噬細胞(Tumor associated macrophage, TAM) 6 1.5 小鼠膠質母細胞瘤模型 7 1.5.1動物腦腫瘤模型簡介 7 1.5.2 ALTS1C1小鼠膠質母細胞瘤模型 8 1.6前藥(Prodrug) 8 1.7抗癌藥物TMZ介紹 9 1.7.1 TMZ的簡介 9 1.7.2 TMZ在人體內的反應途徑 10 1.8藥物遞送(Drug delivery) 10 1.8.1奈米藥物遞送系統的簡介 11 1.8.2奈米藥物遞送種類 11 1.9研究動機與實驗設計 13 二、實驗方法 15 2.1 前藥的合成 15 2.1.1酵母膠囊的製備 15 2.1.2將酵母膠囊由高分子量降解為小分子量的β-葡聚醣 15 2.1.3將TMZ與β-葡聚醣合成前藥 16 2.2 particle性質檢測 17 2.2.1粒徑和表面電荷分析 17 2.2.2穿透式電子顯微鏡(TEM) 17 2.3細胞實驗 18 2.3.1細胞培養 18 2.3.2驗證particle靶向至巨噬細胞的作用 18 2.3.3細胞毒性實驗 19 2.4體內實驗 20 2.4.1原位顱內腫瘤接種(Orthotopic intracranial tumor implantation) 20 2.4.2口服給藥治療 21 2.4.3 particle的吸收途徑 21 三、實驗結果 23 3.1前藥的合成 23 3.1.1粒徑的量測 23 3.1.2 傅立葉紅外光譜測試(FTIR) 24 3.1.3穿透式電子顯微鏡(TEM) 24 3.2 體外實驗 25 3.2.1 particle靶向至巨噬細胞的作用 25 3.2.2細胞毒性實驗 26 3.3體內實驗 27 3.3.1 particle吸收途徑結果 27 3.3.2 particle在老鼠體內的分佈 28 3.3.3老鼠體重的量測與比較 29 四、實驗結論 31 五、參考文獻 32

    [1] ÅKESSON, Agneta; JULIN, Bettina; WOLK, Alicja. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer research, 2008, 68.15: 6435-6441.
    [2] RAIZER, Jeffrey J. HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. Journal of neuro-oncology, 2005, 74.1: 77-86.
    [3] HOLLAND, Eric C. Gliomagenesis: genetic alterations and mouse models. Nature Reviews Genetics, 2001, 2.2: 120.
    [4] https://news.ltn.com.tw/news/life/paper/1257310
    [5] https://www.pinterest.de/pin/727542514779429344/
    [6] TAPHOORN, Martin JB; BOTTOMLEY, Andrew. Health-related quality of life and symptom research in glioblastoma multiforme patients. Expert review of pharmacoeconomics & outcomes research, 2005, 5.6: 763-774.
    [7] FINE, Howard A. The basis for current treatment recommendations for malignant gliomas. Journal of neuro-oncology, 1994, 20.2: 111-120
    [8] HYNYNEN, Kullervo, et al. Noninvasive MR imaging–guided focal opening of the blood-brain barrier in rabbits. Radiology, 2001, 220.3: 640-646.
    [9] ABBOTT, N. Joan, et al. Structure and function of the blood–brain barrier. Neurobiology of disease, 2010, 37.1: 13-25.
    [10] CHOI, James J., et al. Microbubble-Size Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening in MiceIn Vivo. IEEE Transactions on Biomedical Engineering, 2009, 57.1: 145-154.
    [11] https://ib.bioninja.com.au/options/option-a-neurobiology-and/a2-the-human brain/blood-brain-barrier.html
    [12] KRISHNAN, Aarti; SOLDATI-FAVRE, Dominique. Parasite pathogenesis:
    Breaching the wall for brain access. Nature microbiology, 2016, 1.3: 1-2.
    [13] WILLIAMS,David L. Overview of (1→3)-β-D-glucan immunobiology. Mediators of inflammation, 1997, 6.4: 247-250.
    [14] The effects of β-glucan on human immune and cancer cells. Journal of hematology & oncology, 2009, 2.1: 25.
    [15] CHEN, Jeremy JW, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. Journal of clinical oncology, 2005, 23.5: 953-964.
    [16] MIAO, Yang‐Bao, et al. Engineering a Nanoscale Al‐MOF‐Armored Antigen Carried by a “Trojan Horse”‐Like Platform for Oral Vaccination to Induce Potent and Long‐Lasting Immunity. Advanced Functional Materials, 2019, 29.43: 1904828.
    [17] WANG, Shu-Chi, et al. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Laboratory investigation, 2012, 92.1: 151.
    [18] STELLA, Valentino J.; NTI-ADDAE, Kwame W. Prodrug strategies to overcome poor water solubility. Advanced drug delivery reviews, 2007, 59.7: 677-694.
    [19] KRATZ, Felix, etal. Prodrug strategies in anticancer chemotherapy. Chem Med Chem: Chemistry Enabling Drug Discovery, 2008, 3.1: 20-53.
    [20] LEE, Min Hee, et al. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. Journal of the American Chemical Society, 2012, 134.30: 12668-12674.
    [21] FRIEDMAN, Henry S.; KERBY, Tracy; CALVERT, Hilary. Temozolomide and treatment of malignant glioma. Clinical cancer research, 2000, 6.7: 2585-2597.
    [22] SAHOO, Sanjeeb K.; MISRA, Ranjita; PARVEEN, Suphiya. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine in Cancer. Pan Stanford, 2017. p. 73-124.
    [23] MATOBA, Tetsuya, et al. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. Journal of Cardiology, 2017, 70.3: 206-211.
    [24] CHO, Kwangjae, et al. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008, 14.5: 1310-1316.
    [25] SOTO, Ernesto R.; OSTROFF, Gary R. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjugate chemistry, 2008, 19.4: 840-848.
    [26] HUNTER JR, K. W.; GAULT, R. A.; BERNER, M. D. Preparation of microparticulate β‐glucan from Saccharomyces cerevisiae for use in immune potentiation. Letters in applied microbiology, 2002, 35.4: 267-271.
    [27] KOGAN, Grigorij, et al. Increased efficiency of Lewis lung carcinoma chemotherapy with a macrophage stimulator—yeast carboxymethyl glucan. International immunopharmacology, 2002, 2.6: 775-781.
    [28] LEE, Min Hee, et al. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. Journal of the American Chemical Society, 2012, 134.30: 12668-12674.
    [29] ZHOU, Qiang, et al. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. Polymer, 2016, 97: 323-334.
    [30] LEE, Wen-Yu, et al. The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 2009, 30.29: 5505-5513.

    QR CODE