研究生: |
張世裕 |
---|---|
論文名稱: |
發展一個研究神經網路發育與功能之方法學 Development of a Methodology for Studying the Neuronal Networks Development and Function |
指導教授: | 張兗君 |
口試委員: |
周韻家
傅建中 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 神經網路 、PDMS 、海馬迴 、光學微影術 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於過往神經細胞的體外培養,通常是需要事先被覆適合的分子在培養基板上,以幫助神經細胞貼附生長。因此,利用微壓印技術先在培養基板轉印出特定分子圖案,再投入神經細胞,就能夠侷限神經細胞只貼附在培養基板的特定分子圖案區域,之後神經突起生長也必須遵循此圖案形式。然而,這樣的方法不能避免大面積的神經聚集團出現在圖案上,破壞生長形式的規則與完整性。因此,在本實驗中,我們發展一個方法學,試圖去控制細胞本體只座落在圖案的特定位置上,進而生長成神經網路,並且使大面積神經聚集團的出現機率降低。
利用光學顯影技術製作一系列不同規格大小的微米等級的模仁,再由這些模仁翻製出我們所需的PDMS模板。此模板頂部具有64個圓孔,以8 × 8陣列形式排列,底部則為8 × 8方形網狀溝槽,上下相通,將PDMS模板貼附到玻片,加入poly-L-lysine (PLL)使其流入孔洞而在玻片上建立方形網狀圖案。投入細胞後,透過PDMS模板侷限神經細胞只能掉落在特定的位置上,並沿著PLL圖案生長形成神經網路。藉由此方法學的建立,我們將能夠利用活體影像觀察、免疫螢光染色以及電生理紀錄去研究神經網路的發展,最終可以與微電極陣列結合應用,進而去了解神經網路對於各種形式的訊號輸入所產生的反應。
曾煥昌 (2005) 利用微接觸壓印方式分離皮質神經生長錐結構,並探討微圖案培養時細胞聚集現象之成因。國立清華大學分子醫學研究所碩士論文
何顗琤 (2005) 以微轉印及微模板技術建立神經細胞陣列。國立清華大學奈米工程與微系統研究所碩士論文
Beom Jun, S., Hynd, M., Dowell-Mesfin, N., Smith, K., Turner, J., Shain, W. and June Kim, S. (2005). "Synaptic connectivity of a low density patterned neuronal network produced on the poly-L-lysine stamped microelectrode array." Conf Proc IEEE Eng Med Biol Soc 7: 7604-7.
Bhattacharya, S., Datta, A., Berg, J. M. and Gangopadhyay, S. (2005). "Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength." Microelectromechanical Systems, Journal of 14(3): 590-597.
Branch, D. W., Wheeler, B. C., Brewer, G. J. and Leckband, D. E. (2000). "Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine." IEEE Trans Biomed Eng 47(3): 290-300.
Chang, J. C., Brewer, G. J. and Wheeler, B. C. (2003). "A modified microstamping technique enhances polylysine transfer and neuronal cell patterning." Biomaterials 24(17): 2863-70.
Clark, P., Connolly, P., Curtis, A. S., Dow, J. A. and Wilkinson, C. D. (1990). "Topographical control of cell behaviour: II. Multiple grooved substrata." Development 108(4): 635-44.
Curtis, A. and Wilkinson, C. (1997). "Topographical control of cells." Biomaterials 18(24): 1573-83.
Edwards, F. A., Konnerth, A. and Sakmann, B. (1990). "Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study." J Physiol 430: 213-49.
Esch, T., Lemmon, V. and Banker, G. (1999). "Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons." J Neurosci 19(15): 6417-26.
Heller, D. A., Garga, V., Kelleher, K. J., Lee, T. C., Mahbubani, S., Sigworth, L. A., Lee, T. R. and Rea, M. A. (2005). "Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces." Biomaterials 26(8): 883-9.
Hu, J. Y., Baussi, O., Levine, A., Chen, Y. and Schacher, S. (2011). "Persistent long-term synaptic plasticity requires activation of a new signaling pathway by additional stimuli." J Neurosci 31(24): 8841-50.
Jang, K.-J., Kim, M. S., Feltrin, D., Jeon, N. L., Suh, K.-Y. and Pertz, O. (2010). "Two Distinct Filopodia Populations at the Growth Cone Allow to Sense Nanotopographical Extracellular Matrix Cues to Guide Neurite Outgrowth." PLoS ONE 5(12): e15966.
Jungblut, M., Knoll, W., Thielemann, C. and Pottek, M. (2009). "Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording." Biomed Microdevices 11(6): 1269-78.
Kalil, K. and Dent, E. W. (2005). "Touch and go: guidance cues signal to the growth cone cytoskeleton." Current Opinion in Neurobiology 15(5): 521-526.
Lauer, L., Ingebrandt, S., Scholl, K. and Offenhauer, A. (2001a). "Aligned microcontact printing of biomolecules on microelectronic device surfaces." Biomedical Engineering, IEEE Transactions on 48(7): 838-842.
Lauer, L., Klein, C. and Offenhausser, A. (2001b). "Spot compliant neuronal networks by structure optimized micro-contact printing." Biomaterials 22(13): 1925-32.
Li, N., Tourovskaia, A. and Folch, A. (2003). "Biology on a chip: microfabrication for studying the behavior of cultured cells." Crit Rev Biomed Eng 31(5-6): 423-88.
McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J. and Whitesides, G. M. (2000). "Fabrication of microfluidic systems in poly(dimethylsiloxane)." Electrophoresis 21(1): 27-40.
McDonald, J. C. and Whitesides, G. M. (2002). "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices." Acc Chem Res 35(7): 491-9.
Nam, Y., Chang, J. C., Wheeler, B. C. and Brewer, G. J. (2004). "Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures." IEEE Trans Biomed Eng 51(1): 158-65.
Owen, M. J. and Smith, P. J. (1994). "Plasma treatment of polydimethylsiloxane." Journal of Adhesion Science and Technology 8: 1063-1075.
Rogers, J. A. and Nuzzo, R. G. (2005). "Recent progress in soft lithography." Materials Today 8(2): 50-56.
Scholl, M., Sprossler, C., Denyer, M., Krause, M., Nakajima, K., Maelicke, A., Knoll, W. and Offenhausser, A. (2000). "Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces." J Neurosci Methods 104(1): 65-75.
Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I., Whitesides, G. M. and Ingber, D. E. (1994). "Engineering cell shape and function." Science 264(5159): 696-8.
Stenger, D. A., Hickman, J. J., Bateman, K. E., Ravenscroft, M. S., Ma, W., Pancrazio, J. J., Shaffer, K., Schaffner, A. E., Cribbs, D. H. and Cotman, C. W. (1998). "Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons." Journal of Neuroscience Methods 82(2): 167-173.
Suzuki, I., Sugio, Y., Moriguchi, H., Jimbo, Y. and Yasuda, K. (2004). "Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture." J Nanobiotechnology 2(1): 7.
Taketani, M., Baudry, M., Whitson, J., Kubota, D., Shimono, K., Jia, Y. and Taketani, M. (2006). Multi-Electrode Arrays: Enhancing Traditional Methods and Enabling Network Physiology. Advances in Network Electrophysiology, Springer US: 38-68.
Thomas, C. A., Jr., Springer, P. A., Loeb, G. E., Berwald-Netter, Y. and Okun, L. M. (1972). "A miniature microelectrode array to monitor the bioelectric activity of cultured cells." Exp Cell Res 74(1): 61-6.
Vogt, A. K., Lauer, L., Knoll, W. and Offenhausser, A. (2003). "Micropatterned substrates for the growth of functional neuronal networks of defined geometry." Biotechnol Prog 19(5): 1562-8.
Vogt, A. K., Wrobel, G., Meyer, W., Knoll, W. and Offenhausser, A. (2005). "Synaptic plasticity in micropatterned neuronal networks." Biomaterials 26(15): 2549-57.
Ward, M. E., Jiang, H. and Rao, Y. (2005). "Regulated formation and selection of neuronal processes underlie directional guidance of neuronal migration." Molecular and Cellular Neuroscience 30(3): 378-387.
Wu, H. I., Cheng, G. H., Wong, Y. Y., Lin, C. M., Fang, W., Chow, W. Y. and Chang, Y. C. (2010). "A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons." Lab Chip 10(5): 647-53.
Wyart, C., Ybert, C., Bourdieu, L., Herr, C., Prinz, C. and Chatenay, D. (2002). "Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces." J Neurosci Methods 117(2): 123-31.
Xia, Y. and Whitesides, G. M. (1998). "SOFT LITHOGRAPHY." Annual Review of Materials Science 28(1): 153-184.