研究生: |
劉晉昇 Liu, Ching-Sheng |
---|---|
論文名稱: |
細胞S值與其微劑量分析之研究 Study of Cellular S Value and Its Microdosimetric Analysis |
指導教授: |
董傳中
Tung, Chuan-Jong |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 細胞S值 、體內劑量 、醫用體內輻射劑量 、蒙地卡羅 、硼中子捕獲治療 、相對生物效應 |
外文關鍵詞: | Cellular S value, Internal Dosimetry, MIRD, Monte Carlo, BNCT, RBE |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對美國核子醫學學會MIRD委員會細胞S值報告及其應用上的限制,編寫一細胞劑量程式(Cellular Dosimetry Program, CDP),以蒙地卡羅方法計算細胞S值與線性能y值分布,並分析各輻射粒子之相對生物效應。
為了確保細胞S值計算的準確性。首先,將計算結果與MIRD委員會所發表的細胞S值比較,驗證其準確度與穩定性。對於單能量電子與阿伐粒子而言,誤差均少於1 %;放射性核種誤差大部份在2 %內,此方法的穩定度與可靠性在細胞微劑量學的運用是可以被信賴的。
線性能y值為另一項輻射指標,代表粒子在生物體內的游離能力,可視為輻射品質。輻射品質越高,其輻射生物效應越大。它同樣受輻射粒子種類、能量(射程)與細胞幾何關係等因子的影響。粒子射程對平均線性能 有很大影響力,當粒子射程與標靶大小相當時,其能量沉積最有效率,輻射品質也最高。
從較簡單的阿伐粒子,到具有能量歧離現象的電子,最後對整個放射性核種衰變能譜與硼中子捕獲治療中阿伐粒子與鋰-7重核粒子的劑量評估,將整個細胞S值與微劑量學參數做一有系統完整的研究。
本研究最主要的貢獻是完成細胞劑量計算平臺,同時提供微劑量學參數,適用於各種帶電粒子之細胞微劑量學研究。其次,是CDP程式將電子能量沉積計算的適用範圍擴展至低能量區域(為100 eV,相對於PENELOPE程式只適用於500 eV以上),並完成繁複的放射性核種細胞S值計算。第三項貢獻是評估THOR超熱中子束之有效RBE值。
ABSTRACT
In this dissertation, the cellular S value and lineal energy were evaluated for various charged particles, including alpha particles, electrons, and those from radionuclides and BNCT, with the MIRD cell model. To accomplish these calculations and analyze their relative biological effectiveness(RBE), Cellular Dosimetry Program (CDP) were developed with Monte Carlo simulation and the energy-range relations under the continuous slowing down approximation(CSDA).
Firstly, the calculated S values were compared with those results published in “MIRD Cellular S values” by Society of Nuclear Medicine(SNM), and their differences for alpha particles and electrons were within 1% and radionuclide mostly within 2 %, respectively.
Secondly, the lineal energy distribution were analyzed with respect to their energies, cell sizes or source-target configuration for the same situation. The S value refers to the radiation quantity within the target region. By contrast, the lineal energy was an index for radiation quality which definitely described ionizing ability within the biological system. In general, the charged particle whose range equivalent to target size possesses the most lineal energy and highest RBE within the target region.
Finally, the major contribution of this study is to build up the CDP system and carry out systematic research on cellular S values and microdosimetry for various charged particles. Especially, the radionuclides and BNCT were investigated, and the effective RBE of the THOR epithermal neutron beam was estimated for tumors and normal tissues of specified 10B concentrations.
1. Loevinger R, Budinger TF, Watson EE, et al., MIRD Primer for Absorbed Dose Calculations. Revised Edition, New York: Society of Nuclear Medicine; 1991.
2. Goddu SM, Howell RW, et al. MIRD Cellular S Values: Self-Absorbed Dose Per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments. Society of Nuclear Medicine; 1997.
3. Microdosimetry, ICRU Report 36, Bethesda, Maryland, U.S.A., 1983.
4. Rossi H, Zaider M, Microdosimerty and its Application. Springer, NY, 1996.
5. Howell RW, Rao DV, Haydock C., Dosimetry techniques for therapeutic applications of incorporated radionuclides. In: Adelstein SJ, et al., eds. Dosimetry of Administered Radionuclides. Washington, D.C., American College of Nuclear Physicians; 1990:215-256.
6. Goddu SM, Howell RW, Rao DV. Cellular dosimetry: Absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 1994; 35:303-316.
7. Garlsson GA, 1985. Theory basis for dosimetry, In Kase KR, Bjarngard BE, Attix FH, (Eds.), The Dosimetry of Ionizing Radiation. Vol. I. Academic Press, Inc., Orlando, FL.
8. Tung CJ, Liu CS, Wang JP, Chang SL, Calculations of cellular microdosimetry parameters for alpha particles and electrons. Applied Radiation and Isotopes, 61 (2004) 739-743.
9. Tung CJ , Chao TC, Hsieh HW, Chan WT, Low-energy electron interactions with liquid water and energy depositions in nanometric volumes. Nuclear Instruments and Methods in Physics Research B, 262 (2007) 231-239.
10. Liu CS , Tung CJ, Hu YH, Chou CM, Chao TC, Lee CC, Calculations of specific cellular doses for low-energy electrons. Nuclear Instruments and Methods in Physics Research B, 267 (2009) 1823-1829.
11. Weber DA, Eckerman KF, et al., MIRD: Radionuclide Data and Decay Schemes. Society of Nuclear Medicine; 1975.
12. Tables of Isotopes. 8th Edition, edited by Richard B. Firestone, and Virginia S. Shirley, Lawrence Berkeley Laboratory, Published by John Wiley & Sons, Inc. ISBN 0471-14918-7
13. Eckerman KF, et al., Nuclear Decay Data files of the Dosimetry Research Group. ORNL/TM-12350 (December 1993).
14. Eckerman KF, et al., Availability of Nuclear Decay Data in Electronic Form, Including Beta Spectra not Previously Published. Health Physics. 67(4):338-345, 1994
15. 許芳裕。董傳中教授指導,2003 清華大學博士論文 『硼中子捕獲治療的微劑量學應用與治療計劃驗證之研究』
16. 胡尹薰。董傳中教授指導,2005清華大學碩士論文『以蒙地卡羅方法研究細胞之微劑量』
17. 謝琇雯。董傳中教授指導,2005清華大學碩士論文『DNA奈米劑量學之研究』
18. 張瑜珊。董傳中教授指導,2006清華大學碩士論文『清華大學開放式水池反應器之超熱中子束應用於硼中子捕獲治療之混合輻射場劑量研究』
19. 詹文棟。董傳中教授指導,2007清華大學碩士論文『低能量電子與液態水之互應作用及在奈米體積內之能量沉積』
20. 周志銘。董傳中教授指導,2007清華大學碩士論文『氚的微劑量與奈米劑量研究』
21. Tung CJ, Wang YL, Hsu FY, Chang SL and Liu YWH 2004a Characteristics of the new THOR epithermal neutron beam for BNCT. Appl. Radiat. Isotopes 61 861-864.
22. Hatanaka H, Nakagawa Y, Clinical results of long-surviving brain tumor patients who underwent boron neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys., 1994: 28, 1089-1097.
23. Attix FH, Introduction to Radiological Physics and Radiation Dosimetry. John Wiley & Sons, Inc., 1986.
24. ICRU, 1993. Stopping Powers and Ranges for Protons and Alpha Particles. ICRU Report No. 49. International Commission on Radiation Units and Measurements, 7910 Woodmont Avenue, Bethesda, Maryland 20814, USA.
25. ICRU, 1984. Stopping Powers for Electrons and Positrons. ICRU Report No. 37. International Commission on Radiation Units and Measurements, 7910 Woodmont Avenue, Bethesda, Maryland 20814, USA.
26. ICRU, 1989. Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report No. 44. International Commission on Radiation Units and Measurements, 7910 Woodmont Avenue, Bethesda, Maryland 20814, USA.
27. ASTAR Website, Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions. http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
28. SRIM Website, The Stopping and Range of Ions in Matter. http://www.srim.org/
29. Metropolis N, Ulam S, The Monte Carlo Method. J. Am. Stat. Assoc., 44, N 247, 335-341, 1949.
30. Salvat F, Fernandez-Varea JM, Acosta E, and Sempau J, PENELOPE- A Code System for Monte Carlo Simulation of Electron and Photon Transport (version 2001), ISBN 92-64-18475-9.
31. Benedito E, Fern□ndez-Varea J M, and Salvat F, Mixed simulation of the multiple elastic scattering of electrons and positrons using partial-wave differential cross section. Nucl. Instrum. and Meth. B 174: 91-110, 2001.
32. Pihet P, Menzel HG, Schmidt R, Beauduin M and Wambersie A 1990 Biological weighting function for RBE specification of neutron therapy beams. Radiat. Prot. Dosim. 31 437-442
33. Coderre JA and Morris GM 1999 The radiation biology of boron neutron capture therapy. Radiat. Res. 151 1-18.
34. Zamenhof R, Redmond II E, Solares G., Katz D, Riley K, Kiger S and Harling O 1996 Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data. Int. J. Radiat. Oncol. Biol. Phys. 35 383-397.
35. THOR website, http://thor.web.nthu.edu.tw
36. Liu CS, Tung CJ, Chang YS, et al., Microdosimetry for the characterization of the THOR epithermal neutron beam. (in submission to 2010 Radiation Measurement)
37. Folkard M, Prise KM, Vojovic B, Status of Charged Particle Microbeams for Radiation Biology, Journal of Physics: Conference Series (13th International Conference on the Physics of Highly Charged Ions) 58: 62-67, 2007.
38. Folkard M, Prise KM, et al., The use of microbeams to investigate radiation damage in living cells. Applied Radiation and Isotopes, 67: 436-439, 2009.