簡易檢索 / 詳目顯示

研究生: 施伯謙
Shih, Po-Chain
論文名稱: 基於兩階段局部線性插入與夏普利值的單張影像之超解析度方法
Two Stage Super Resolution from a Single Image by Local Linear Embedding and Shapley Values
指導教授: 張隆紋
Chang, Long-Wen
口試委員: 黃仲陵
陳朝欽
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 34
中文關鍵詞: 超解析度夏普利值局部線性插入
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去幾年間影像超解析度方法的研究越來越普遍,影像超解析度方法的應用也越來越廣泛,不論是智慧型手機、電視、網路攝影鏡頭、數位相機...等等都有應用影像超解析度方法的部分。影像超解析度方法是將一張低解析度影像,經過各種不同的方法,以獲得其高解析度影像的演算法。
    本篇論文中,我們提出一個基於線性局部插入法、不需要用到額外的影像資料庫,只需要單張影像的影像超解析度方法,這個方法並將夏普利值應用於其中。夏普利值常在聯盟賽局裡被用來分配參與者的報酬,夏普利值是藉由計算出賽局裡每個參與者貢獻來決定如何分配報酬。
    最後我們經由實驗證明,本論文的演算法所產出的高解析度影像無論是在主觀感覺或是客觀標準的影像品質上都有不錯的結果。


    Super-resolution is very popular for research in the image processing during past years. It has been widely used on different digital devices such as smart phones, televisions, webcams and digital cameras. The goal of super resolution is to get a high resolution image from one or more low resolution images.
    In this thesis, we propose a super resolution method that generates a high-resolution image from a single low resolution image without training images by local linear embedding. We use the input low resolution image itself and its down-sample image as training images. In our algorithm, we find several nearest patches for each input low resolution image patch from its down-sample image and compute the reconstruction weights, and then use the weights to reconstruct high resolution image patches with the help of the input low resolution image. In our framework, we also apply the Shapley value to define the nearest patches.
    Finally, we do several experiments to show that it is well visual quality and the objective criteria, which is represented as the PSNR value.

    Chapter 1 Introduction…………………………………….…………………..1 Chapter 2 Related Works…………………………………………………….3 2.1 Locally linear embedding (LLE)……………………………….3 2.2 LLE for Super resolution method………………………………5 2.3 Shapley value…………………………….…………………………9 Chapter 3 Proposed Method…………………..…………………………….11 3.1 Framework of proposed method…….……………………………13 3.2 Algorithm of proposed method….….………………………….13 Chapter 4 Experimental Results…………………………………………..20 4.1 Performance of patch section by Shapley values.........22 4.2 The result of test image…………………………………………….24 Chapter 5 Conclusion………………………………………………………32 Appendix-terminology in Chapter 3……………………….………………33

    [1] H. Chang, D.Y. Yeung and Y. Xiong, “Super-resolution through neighbor embedding”. CVPR, 2004, pp. I-275 - I-282.
    [2] X. Li and M.T. Orchard, “New edge-directed interpolation”, IEEE Trans. on Image Processing, vol. 10, no. 10, 2001, pp. 1521-1527.
    [3] R. Keys, “Cubic convolution interpolation for digital image processing”, IEEE Trans. Acoust. Speech, Signal Process., vol. ASSP-29, no.6, Dec. 1981, pp. 1153-1160
    [4] H.S. Hou and H.C. Andrews, “Cubic splines for image interpolation and digital filtering”, IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-26, no. 6, Dec. 1978, pp. 508-517.
    [5] M. Irani and S. Peleg. Improving resolution by image registration. CVGIP, (3), 1991.
    [6] D. Capel. Image Mosaicing and Super-Resolution. Springer–Verlag, 2004.
    [7] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super resolution. T-IP, (10), 2004.
    [8] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution. Comp. Graph. Appl., (2), 2002.
    [9] P. Dubey, Ithaca. On the Uniqueness of the Shapley Value, Int. Journal of Game Theory, Vol. 4, Issue 3, page 131-139, Physica-Verlag, Vienna
    [10] L. S. Shapley. Notes on the n-person game—II the value of an n-person game, U.S. AIR FORCE PROJECT RAND RESEARCH MEMORNADUM, RM-670, ASTIA Document Number ATI 210720, 1951
    [11] D. Glasner, S. Bagon and M. Irani, “Super-resolution from a single image,” in ICCV, 2009, pp. 349-356

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE