簡易檢索 / 詳目顯示

研究生: 林詠強
論文名稱: 束縛燒結的機制與應力研究
指導教授: 簡朝和
J. H. Jean
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 52
中文關鍵詞: 玻璃玻璃加陶瓷應力量測
外文關鍵詞: glass, glass+ceramic, stress measurement
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以硼矽玻璃+氧化鋁進行束縛燒結時低溫共燒硼矽玻璃之緻密動力學與機制及透過雷射光學量測系統對銀膏進行束縛燒結時之應力分析。
    當硼矽玻璃+氧化鋁(BSG+alumina)薄片在燒結中受到束縛時會導致緻密速率減緩。然而我們發現無論在自由燒結或束縛燒結,影響緻密的控制機制仍為黏滯流動(viscous flow)。束縛燒結的緻密化行為可由使用於多孔性燒結玻璃構成方程的黏性類比透過自由燒結來做數學上的描述。

    在銀膏應力量測部分透過雷射光學系統量測得到束縛燒結應力,並不足以解釋減緩緻密速率減緩,其中應力大小與緻密速率有關。因此由實驗結果得知除了燒結應力的影響外還伴隨著晶粒成長的減緩及緻密機制由自由燒結時較快的grain boundary diffusion轉變成束縛縛燒結時較慢的lattice diffusion。


    1.簡介 1 2.實驗方法 4 2-1漿料製備 4 2-2刮刀製程 4 2-3疊壓 5 2-4 網印 5 2-5脫脂除碳 6 2-6燒結 6 2-7微結構觀察 8 3.結果與討論 9 A. BSG+alumina系統 3-1 BSG+alumina與alumina之界面反應 9 3-2 BSG+alumina的束縛燒結 9 3-3 BSG+alumina束縛燒結的動力學機制 10 3-3-2燒結緻密速率比較 10 3-3-3束縛燒結控制機制 10 3-4 BSG+alumina束縛燒結的理論計算 11 B. 銀膏應力量測系統 13 3-5 自由燒結與束縛燒結緻密曲線 13 3-6 束縛燒結應力量測 13 3-7 束縛燒結與晶粒成長 15 3-8 束縛燒結緻密機制 16 4.結論 18 5.參考文獻 19

    [1] W.A. Vitrio and R.L. Brown, “Process for Fabricating Dimensionally
    Stable Interconnect Boards,” US Patent No. 4,656,552, 1987.
    [2] K.R. Mikeska and D.T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” US Patent 5454741, 1994.
    [3] B. Geller, B. Thaler, A. Fathy, M.J. Liberatore, H.D. Chen, G. Ayers, V.
    Pendrick and Y. Narayan, “LTCC-M: An Enabling Technology for
    High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72
    (1999).
    [4] J.Bang and G.Q. Lu, “Constrained-Film Sintering of a Borosilicate
    Glass: In-Situ Measurement of Film Stress,” J. Am. Ceram. Soc.,78[3], 813-15(1995)
    [5] T.J. Garino and H.K. Bowen, “Deposition and Sintering of Particle
    Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11],C315-17
    (1987).
    [6] T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film
    Sintering,” J. Am. Ceram. Soc., 73 [2], 251-57 (1990).
    [7] E.G. Liniger, R. Raj and D. B. Marshall, “The Instability of
    Polycrystalline Thin Films: Experiments and Theory,” J. Mater. Res., 5
    151-60 (1990).
    [8] G.W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,”
    J. Am. Ceram. Soc., 68 [4], 216-20 (1985).
    [9] A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films – I.
    Formulation and Analytical Results,” Mech. Mater., 9, 107-19 (1990).
    [10]A. Jagota and C.Y. Hui, “Mechanics of Sintering Thin Films – II.
    Cracking due to Self-Stress,” Mech. Mater., 11, 221-34 (1991).
    [11] R.K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films
    Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6], 287-92
    (1985).
    [12]R. K. Bordia and A. Jagota, “Crack Growth and Damage in
    Constrained Sintering Films,” J. Am. Ceram. Soc., 76 [10], 2475-85
    (1993).
    [13]T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering
    of Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9], 1649-55
    (1989).
    [14]R.K. Bordia and G.W. Scherer, “On Constrained Sintering – I,
    Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9], 2393-
    97 (1988).
    [15]R.K. Bordia and G.W. Scherer, “On Constrained Sintering – II,
    Comparison of Constitutive Models,” Acta. Metall., 36 [9], 2399-2409
    (1988).
    [16]R.K. Bordia and G. W. Scherer, “On Constrained Sintering – III, Rigid Inclusions,” Acta. Metall., 36 [9], 2411-16 (1988).
    [17] M. Ohring, The Material Science of Thin Films (Academic Press,Inc.,
    San Diego, CA, 1992),pp.416-418
    [18]J. Choe, J.N. Calata, and G.Q Lu, “Constrained-Film Sintering of a
    gold paste”, J. Mater. Res., 4 [10] 986-994 (1995)
    [19] J.H. Jean ans S.Y. Tseng, “Stress Development During Constrained
    Sintering of Alumina/Glass/Alumina Sandwich Structure,” J. Am
    Ceram. Soc.,in review, (2000).
    [20] W.D. Kingery, “Densification during Sintering in the Presence of a
    Liquid Phase – I, Theory,”J. Appl. Phys., 30 [3], 301-07 (1959).
    [21] J.H. Jean and T.K. Gupta, “Isothermal and Non-isothermal Sintering
    Kinetics of Glass-Filled Ceramics,” J. Mater. Res., 7[12], 3342-
    48(1992)
    [22] W. Epse, Material of High Vacuum Technology (Pergamon Press,
    Oxford, 1968), Vol. 2, Chap1 10.
    [24] J. K. Mackenzie and R. Shuttleworth, “A Phenomenological Theory
    of Sintering,” Proc. Phys. Soc. London, 62, 833 (1949).
    [25] J.K. Mackenzie, “The Elastic Constants of a Solid Containing
    Spherical Holes,” Proc. Phys. Soc. London, 63, 2-11 (1950).
    [26] G. W. Scherer, “Sintering With Rigid Inclusion,” J. Am. Ceram. Soc.
    70 , 719-725 (1987).
    [27] Robert E.Reed-Hill, Physical Metallurgy Principles (Thomson
    Publishing Company) pp8-32-8-35.
    [28] E. A. Brandes, Smithells Metals Reference Book,6th ed. (Butterworth
    & Co., Ltd., Washington, DC, 1983)
    [29] T. Cheng, “Co-Sintering Behavior of Ceramic-Metal and Glass-Metal
    Multilayer Films : Modelling and Experiments,” Ph.D. Thesis,
    Cornell University, Ithaca, NY (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE