研究生: |
江昀融 Yun-Jung Chiang |
---|---|
論文名稱: |
建構四環黴素誘發人類p21的表達系統以探討中國倉鼠細胞株G1檢查點的缺失 Construction of a tetracycline-inducible human p21 (Waf1/Cip1) system to investigate G1 checkpoint defect in CHO.K1 cells |
指導教授: |
劉銀樟
Yin-Chang Liu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 四環黴素誘發系統 、G1 檢查點 、p21 、中國倉鼠細胞株 、紫外線 、細胞自裁反應 |
外文關鍵詞: | Tetracycline-inducible system (Tet-On), G1 checkpoint, p21, CHO.K1, UV, apoptosis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據先前的研究指出,中國倉鼠細胞株 (CHO.K1) 無法停滯在G1細胞期,特別是接受X射線照射刺激之後。除了此現象之外,我們實驗室還發現如果加入秋水仙素到中國倉鼠細胞的培養皿中,隨即接受紫外線的照射,則會出現細胞大量死亡的現象,且此現象是一種細胞自裁反應 (apoptosis)並且可能和細胞的p21基因不表現有關。因此,為了進一步瞭解上述觀察到的現象是否與p21基因的表現缺失有關。我們建構四環黴素調控的基因表現系統,藉以控制送進細胞的人類p21基因的表現時機。以不同的DNA傷害刺激後,利用細胞流式分析儀來觀察細胞週期的分佈情形。在誘發人類p21蛋白的表現前提之下,無論以X射線(8 Gy)或者紫外線(25 J/m2)的刺激,我們都可以觀察到細胞有G1週期停滯現象。此外,當我們以秋水仙素配合紫外線來刺激有表現人類p21蛋白的細胞,不但沒有出現先前所看到的細胞大量死亡現象,反而卻觀察到G1細胞週期停滯的情形。在細胞存活分析的實驗中,我們還發現有人類p21蛋白表現的細胞在接受紫外線的刺激後,比p21蛋白表現缺失的細胞有較明顯的存活能力。總之,根據實驗結果發現,p21蛋白的表現缺失是造成中國倉鼠細胞珠G1檢查點缺失的重要因素。此外,我們也認為p21蛋白的表現,有助於細胞抵抗與紫外線有關所造成的細胞死亡現象,以增進細胞的存活能力。
The failure of G1 arrest in CHO.K1 cells is widely observed following X-ray or other DNA-damaging treatments. Recent research in our laboratory has found that the expression of p21 (Waf1/Cip1) gene is deficient in CHO.K1 cells. In addition, cells were sensitive to UV irradiation (25 J/m2) and underwent apoptosis in colcemid-containing medium. In this study, the role of p21 (Waf1/Cip1) protein in CHO.K1 cells following environmental assaults was investigated. After constructing a tetracycline-regulated human p21 expression system, we ectopically expressed human p21 (Waf1/Cip1) prior to treatment with DNA damaging agents and diagnosed the cell cycle distribution by flow cytometric analysis. Intriguingly, we observed recovery of G1 checkpoint in CHO.K1 cells with overexpression of human p21 following UV or X-ray irradiation. Furthermore, the survival analysis of CHO.K1 cells indicated that cells with overexpression of human p21 (Waf1/Cip1) protein were significantly resistant to UV than those without p21 expression, which seemed to block the massive apoptotic death exacerbated by UV irradiation in the presence of colcemid. These results demonstrate that overexpression of human p21 (Waf1/Cip1) in CHO.K1 cells can complement the G1 checkpoint defect and promote cell survival ability to against from DNA damaging agents.
Bissonnette N., Hunting D.J. (1998). p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene 16, 3461-9.
Brugarolas J., Chandrasekaran C., Gordon J.I., Beach D., Jacks T., Hannon G.J. (1995). Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552-7.
Chen J., Jackson P.K., Kirschner M.W., Dutta A. (1995). Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374, 386-8.
Del Sal G., Murphy M., Ruaro E., Lazarevic D., Levine A.J., Schneider C. (1996). Cyclin D1 and p21/waf1 are both involved in p53 growth suppression. Oncogene 12, 177-85.
Deng C., Zhang P., Harper J.W., Elledge S.J., Leder P. (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675-84.
El-Deiry W.S., Harper J.W., O'Connor P.M., Velculescu V.E., Canman C.E., Jackman J., Pietenpol J.A., Burrell M., Hill D.E., Wang Y. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54, 1169-74.
El-Deiry W.S. (1998). p21/p53, cellular growth control and genomic integrity. Curr. Top Microbiol. Immunol. 227, 121-37.
Flores-Rozas H., Kelman Z., Dean F.B., Pan Z.Q., Harper J.W., Elledge S.J., O'Donnell M., Hurwitz J. (1994). Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase delta holoenzyme. Proc. Natl. Acad. Sci. U S A 91, 8655-9.
Harper J.W., Adami G.R., Wei N., Keyomarsi K., Elledge S.J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-16.
Hengstschlager M., Braun K, Soucek T., Miloloza A., Hengstschlager-Ottnad E. (1999). Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle. Mutat. Res. 436, 1-9.
Kao F.T., Faik P., Puck T.T. (1979). Extension of branching processes from hybrids of brain and Chinese hamster ovary cells. Exp. Cell Res. 122, 83-91.
Larner J.M., Lee H., and Hamlin J.L. (1994). Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol. Cell. Biol. 14, 1901-1908.
Lee H., Larner J.M., Hamlin J.L. (1997). Cloning and characterization of Chinese hamster p53 cDNA. Gene 184, 177-83.
McDonald E.R. Ⅲ, Wu G.S., Waldman T., El-Deiry W.S. (1996). Repair Defect in p21 WAF1/CIP1 -/- human cancer cells. Cancer Res. 56, 2250-5.
Meek D.W., Simon S., Kikkawa U., Eckhart W. (1990). The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9, 3253-60.
Nakanishi M., Robetorye R.S., Pereira-Smith O.M., Smith J.R. (1995). The C-terminal region of p21SDI1/WAF1/CIP1 is involved in proliferating cell nuclear antigen binding but does not appear to be required for growth inhibition. J. Biol. Chem. 270, 17060-3.
Pepperkok R., Lorenz P., Ansorge W., Pyerin W. (1994). Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J. Biol. Chem. 269, 6986-91.
Pepperkok R., Lorenz P., Jakobi R., Ansorge W., Pyerin W. (1991). Cell growth stimulation by EGF: inhibition through antisense-oligodeoxynucleotides demonstrates important role of casein kinase II. Exp. Cell Res. 197, 245-53.
Pines J. (1995). Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 308, 697-711.
Schroter M., Peitsch M.C., Tschopp J. (1996). Increased p34cdc2-dependent kinase activity during apoptosis: a possible activation mechanism of DNase I leading to DNA breakdown. Eur. J. Cell Biol. 69, 143-50.
Suzuki A., Tsutomi Y., Miura M., Akahane K. (1999). Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene 18, 1239-44.
Tzang B.S., Lai Y.C., Hsu M., Chang H.W., Chang C.C., Huang P.C., Liu Y.C. (1999a) Function and sequence analyses of tumor suppressor gene p53 of CHO.K1 cells. DNA Cell Biol. 18, 315-21.
Tzang B.S., Lai Y.C., Liu Y.C. (1999b). UV-induced but P53 independent apoptotic death in CHO.K1 cells is promoted by M phase inhibitors. In Vitro Cell Dev. Biol. Anim. 35, 17-8.
Vogelstein B., Kinzler K.W. (1992). p53 function and dysfunction. Cell 70, 523-6.
Waga S., Hannon G.J., Beach D., Stillman B. (1994). The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-8.
Xiong Y., Hannon G.J., Zhang H., Casso D., Kobayashi R., Beach D. (1993). p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-4.
Xu S.Q., El-Deiry W.S. (2000). p21(WAF1/CIP1) inhibits initiator caspase cleavage by TRAIL death receptor DR4. Biochem. Biophys. Res. Commun. 269, 179-90.
Zhang Y., Fujita N., Tsuruo T. (1999). Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene 18, 1131-8.