研究生: |
彭新傑 Peng, Hsin Chieh |
---|---|
論文名稱: |
利用資料挖礦找出影響產品品質之關鍵因素:以LED封裝為例 Using Data Mining to Identify Critical Factors of Product Quality: An Empirical Study on LED Packaging |
指導教授: |
陳建良
Chen, James C. |
口試委員: |
羅明琇
Lo, Sonia M. 陳子立 Chen, Tzu Li |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 資料挖礦 、知識發現 、決策樹分析 、關聯規則 |
外文關鍵詞: | Knowledge discovery from database |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著市場競爭激烈,LED封裝產品價格也持續下探,嚴重影響了毛利率。面對這樣嚴苛的考驗,通常最簡單的方式是將問題轉嫁給供應商,要求原物料的成本下降。除此之外,對於產品的製程表現,也是值得著手去改善的方向,如何有效提升產品良率,才能從被動地要求供應商成本下降外,還可以更主動地提升自己產品的競爭力,並且維持產品毛利率。
工程單位擅長用實驗設計和統計手法去改善製程,提升良率。然而,因為資訊系統的發展迅速,建置也相當普及,每家工廠製造過程都會使用更系統化的方式去輔助生產,當中也儲存大量的交易記錄保留至自家的資料庫內,所以如何有效地利用這些資料,轉換成資訊,甚至成為公司重要的知識,不僅不浪費儲存資料的成本外,更能創造公司產業製造的智慧,提升產品品質。
大數據的時代,人們開始接受從資料中找出隱含的意義,希望能夠帶來價值,往往可以從資料的結果分析出可能的原因。因此本研究希望透過資料挖掘的方式,使用決策樹分類歸納、預估的方式,以及關聯規則找出關聯規則的方法,找出LED封裝製程產品的生產條件因素,是否存在影響產品規格的關鍵因子,讓產品設計和生產製造單位,可以針對關鍵因子進行提升或是改善,甚至可以盡量避免使用造成不良產品的因素,例如:原物料、生產機台。
關鍵詞:資料挖礦,知識發現,決策樹分析,關聯規則,決策支援。
Since stiff global competition, the price of light-emitting diode (LED) package is going down. How to keep the gross profit of product had been a critical issue for the industry. Although we can shift the losses to the vendor for asking more cost down, we also have to promote productive yield with data mining. The better our product is, the higher gross profit is, so we can use data mining to identify critical factors and make our company more profitable and competitive. Data mining is a very powerful and useful tool to find out the root cause and decrease the moment of detecting problems among the flow of data analysis. Knowledge discovery from database (KDD) is the procedure that we can define our problem and find out critical factors by using data mining skills. Owing to the development of information system, all company has their own database to store transaction data. From data collecting to data analyzing, KDD just set up a framework to make manufacturing much better intelligent. In this research, we used two common data mining skills, decision trees and association rules, to identify critical factors of product quality. In the empirical study of LED packaging, we know critical factors in bill of materials (BOMs) base on decision tree, and understand how to choose the operation machine in manufacturing. Using data mining is very different from the rule of thumb that’s used in the past, and it’s more efficient to make decision. Last, we hope to enhance our manufacture by mining historical data, and make intelligent manufacture with rolling discover knowledge from database.
Keyword: Data mining, Knowledge discovery from database, Decision tree, Association rules, Decision support.
參考文獻
林居逸,「整合正向與負向關聯規則探勘於發掘DRAM製造之問題機台」,國立交通大學管理學院資訊管理學程碩士班,碩士論文,中華民國九十九年
張家銘,「以CART決策樹方法建構晶圓良率值與晶圓允收參數間之關聯性模式」國立清華大學工業工程與工程管理學系,碩士論文,中華民國九十五年
梁惠姿,「建構半導體製造過程產品異常資料挖礦技術及其雛型系統之研究」國立清華大學工業工程與工程管理學系,碩士論文,中華民國九十三年
許伯聰,「以田口法設計對於白光發光二極體色座標集中度提升的影響」,國立中央大學機械工程學系,碩士論文,中華民國一百零二年
麥姿穎,「應用決策樹分析求解隨機生產計劃問題」國立清華大學工業工程與工程管理學系,碩士論文,中華民國九十二年
楊景晴,「整合決策樹與關聯規則之資料挖礦架構及其實證研究」,國立清華大學工業工程與工程管理學系,碩士論文,中華民國九十二年
簡禎富,林鼎浩,“建構半導體晶圓允收測試資料挖礦架構及其實證研究”,Journal of the Chinese Institute of Industrial Engineers, vol. 18, No. 4, 2001, pp. 37-48.
簡禎富、許嘉裕,資料挖礦與大數據分析,前程文化,台灣,中華民國一百零三年
顏偉倫,「建構資料挖礦架構於半導體先進製程導入量產階段的良率提升」國立清華大學工業工程與工程管理學系,碩士論文,中華民國一百年
R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, IBM Almaden Research Center, Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994, pp.487-499.
R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules between Sets of Items in Large Databases”, IBM Almaden Research Center, Proceedings of the 1993 ACM SIGMOD Conference, Washington DC, USA, 1993, pp.207-216.
R. Agarwal and V. Dhar, “Editorial-Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research”, Information System Research, vol. 25, No. 3, 2014, pp. 443-448.
M. Antonie and O. Zaïane, “An Associative Classifier based on Positive and Negative Rules”, Proceedings of The 9th ACMSIGMOD Workshop on Research Issues in Data Mining And Knowledge Discovery, Paris, France, 2004, pp. 64-69.
M. Beery and G. Linoff, Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, 2nd edition, Chapter 17, Wiley, Indianapolis, 2004, pp. 539-595.
S.P. Bora, “Data Mining and Ware Housing”, Electronics Computer Technology (ICECT), 3rd International Conference on, vol. 1, Kanyakumari, 2011, pp. 1-5.
D. Braha and A. Shmilovici, “On the Use of Decision Tree Induction for Discovery of Interactions in a Photolithographic Process”, IEEE Transactions on Semiconductor Manufacturing, vol. 16, No. 4, 2003, pp. 644-652.
L. Cao, H. Zhang, Y. Zhao, D. Luo and C. Zhang, “Combined Mining: Discovering Informative Knowledge in Complex Data”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, No. 3, 2011, pp. 699-712.
B. Esmaeilian, S. Behdad and B. Wang, “The Evolution and Future of Manufacturing: A Review”, Journal of Manufacturing Systems, vol. 39, 2016, pp. 79-100.
F. Esposito, D. Malerba and G. Semeraro, “A Comparative Analysis of Methods for Pruning Decision Trees”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 19, NO. 5, 1997, pp. 476-491.
U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, “From Data Mining to Knowledge Discovery in Database”, AI magazine, American Association for Artificial Intelligence, 1996, pp. 37-54.
J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, New York, 2006.
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, Chapter 14, Springer, 2008.
G. Kesavaraj and S. Sukumaran, “A Study on Classification Techniques in Data Mining”, Computing, Communications and Networking Technologies (ICCCNT), IEEE, Tiruchengode, 2013, pp. 1-7.
S.H. Liao, P.H. Chu and P.Y. Hsiao, “Data Mining Techniques and Applications – A Decade Review from 2000 to 2011”, Expert Systems with Applications, vol. 39, 2012, pp. 11303-11311.
S. Nestorow and N. Jukic, “Ad-hoc Association-rule Mining within the Data Warehouse”, Proceedings of the 36th Annual Hawaii International Conference on System Sciences, IEEE, Hawaii, 2003, pp. 10-19.
A. Peña-Ayala, “Educational Data Mining: A Survey and a Data Mining-based Analysis of Recent Works”, Expert Systems with Applications, vol. 41, 2014, pp. 1432–1462.
D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann, San Francisco, CA, 1999.
P. Tambe, “Big Data Investment, Skill, and Firm Value”, Management Science, vol. 60, No. 6, 2014, pp. 1452-1469.
N. Ur-Rahman and J.A. Harding, “Textual Data Mining for Industrial Knowledge Management and Text Classification: A Business Oriented Approach”, Expert Systems with Applications, vol. 39, 2012, pp. 4729–4739.
D. Wu, D. L. Olson and Z.-Y. Dong, “Data Mining and Simulation: A Grey Relationship Demonstration”, International Journal of Systems Science, vol. 37, No. 13, 2006, pp. 981–986.
X. Wu, “Data Mining: Artificial Intelligence in Data Analysis”, Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04), IEEE, 2004, p. 7.